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We report on a preliminary laboratory based x-ray phase-contrast imaging system capable of

achieving two-directional phase sensitivity, thanks to the use of L-shaped apertures. We show that

in addition to apparent absorption, two-directional differential phase images of an object can be

quantitatively retrieved by using only three input images. We also verify that knowledge of the

phase derivatives along both directions allows for straightforward phase integration with no streak

artefacts, a known problem common to all differential phase techniques. In addition, an analytical

method for 2-directional dark field retrieval is proposed and experimentally demonstrated. VC 2015
Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4935983]

Interest in x-ray phase-contrast imaging (XPCi) has

increased over recent years due to its ability to visualise fea-

tures that would be otherwise invisible in conventional x-ray

images. The complex refractive index of an object, n
¼ 1� dþ ib; describes its interaction with x-rays. For some

samples, the real part decrement, d (responsible for refrac-

tion) can be up to three orders of magnitude greater than b
(which accounts for absorption), thus potentially providing

improved image contrast compared to conventional x-ray

methods. Numerous techniques have been developed to

detect the phase signal, among which are free space propaga-

tion (FSP),1,2 grating interferometry (GI),3–5 crystal

analyser-based approaches,6,7 and non-interferometric meth-

ods such as edge-illumination (EI).8–10 Many of these meth-

ods have been progressively translated from synchrotron

facilities and adapted to research laboratories using conven-

tional sources,11 with the final aim of targeting real-world

applications. In this regard, grating interferometry and edge-

illumination have proved to be most promising.5,12,13

EI is a non-interferometric method that can be per-

formed using synchrotron or conventional x-ray sources

without the need for source segmentation. Among its main

advantages are its relaxed mask alignment conditions,14

reduced dose to the sample,15 lack of source coherence

restrictions,16–18 and achromaticity.17–19 Fig. 1(a) shows a

schematic of a standard one dimensional (1D) EI set-up.

The incoming x-ray beam is split by a pre-sample mask M1

(with linear apertures of period p1) into a series of non-

interfering, physically separated beamlets. The beams par-

tially impinge on the periodically arranged absorbing

edges of a detector mask, M2 (of period p2), placed close to

the detector. The masks are positioned along the optical

axis such that p2¼ p1 � m, where m is the geometric mag-

nification defined as ðZ1 þ Z2Þ=Z1. In the absence of the

sample, the detector mask is held fixed and the pre-sample

mask is scanned over one period in the vertical direction

to obtain the so-called illumination function (IF),17,20

which relates the level of intensity measured by each pixel

to the physical displacement of each beamlet. This is anal-

ogous to the rocking curve in analyser based imaging

(ABI).20

A refracting sample placed immediately downstream of

M1 changes the proportions of each beam incident upon the

exposed part of the pixel, and hence the measured intensity.

If two images are taken at two different vertical misalign-

ments of M1 with respect to M2, corresponding to opposite

sides of the IF, the phase contrast signal is reversed, but the

absorption signal remains the same. Therefore, the effects

caused by refraction and absorption can be separated by

phase retrieval algorithms using only these two images.17

Note that the above described 1D set-up results in one

dimensional sensitivity, which means that this type of EI sys-

tem is only sensitive to phase shifts in the scanning direction,

i.e., perpendicular to the mask septa.10,17,21 Hence, structures

inducing refraction in the orthogonal plane (i.e., parallel to

the mask septa, along the x-axis in Fig. 1(a)) are less easily

detected.

Single directional phase sensitivity is a typical disad-

vantage of differential XPCi techniques. In fact, aside from

FSP, earlier implementations of all other XPCi techniques

were inherently phase sensitive in only one direction, and

although in recent years 2-dimensional (2D) implementa-

tions of GI have emerged,22–25 none of these enabled main-

taining high phase sensitivity without sectioning or

collimating an extended source at the source plane.26

In this letter, we describe and test a preliminary imple-

mentation of a 2D quantitative EI approach with a polychro-

matic conventional x-ray tube. The pre-sample and detector

masks are test structures consisting of a series of L-shaped

apertures (see Fig. 1(b)). This unusual aperture shape was

selected so that the EI condition could be realised simultane-

ously along two orthogonal pixel edges. The 2D masks were

fabricated by Creatv Microtech according to an earlier

design,13 and in a previous proof-of concept study conducted

0003-6951/2015/107(20)/204105/5 VC Author(s) 2015107, 204105-1
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at a synchrotron were shown to be capable of detecting 2D

phase contrast signals without the need to rotate the sample

or the imaging system.27 However, the proof-of-concept na-

ture of this work meant that the first masks were fabricated

as thinner (�30 lm of gold) than their corresponding 1D

counterparts, in order to be able to obtain pilot data in a cost-

effective manner. This leads to a comparative increase in x-

ray transmission through the mask septa, and therefore added

background noise to the collected images.

In analogy to the 1D case, the 2D illumination function

(Fig. 1(c)) can be acquired in the absence of the sample by ras-

ter scanning M1 with respect to M2. Given this function, which

we call Lðx; yÞ, the detected intensity in the presence of a negli-

gibly scattering sample can be described in the following way:

Iðx; yÞ ¼ ITLðxþ Dxr; yþ DyrÞ; (1)

where IT is the intensity transmitted through the sample,

Dxr ¼ zodDhr;x and Dyr ¼ zodDhr;y are the lateral shifts suf-

fered by the beam, zod is the object-to-detector distance, and

Dhr;x and Dhr;y are the refraction angles in the x and y direc-

tions, respectively. Making use of the analogy with ABI,20

we can extend the method developed by Rigon et al.28 and

perform a first-order, two-dimensional Taylor expansion,

assuming small refraction angles. For the three parameters to

be retrieved, i.e., absorption and refraction in x and y, three

linearly independent equations can be written using three

input images, I1–3 acquired at different positions on the IF.

These can be expressed using the following matrix

notation:

I1

I2

I3

2
64
3
75¼IT

L1Lx
1Ly

1

L2Lx
2Ly

2

L3Lx
3Ly

3

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼M

1

Dxr

Dyr

2
64

3
75
; (2)

where Lj
n indicates @Ln=@j at positions n ¼ 1; 2; 3.

The linear system in Eq. (2) can then be solved analyti-

cally to retrieve the three images IT; Dhr;x, and Dhr;y,

IT ¼
I1 Lx

2L
y
3�Lx

3L
y
2

� �
þ I2 Lx

3L
y
1�Lx

1L
y
3

� �
þ I3 Lx

1L
y
2�Lx

2L
y
1

� �
det Mð Þ

;

(3)

Dhr;x¼
Dxr

zod

¼
I1 L3L

y
2�L2L

y
3

� �
þI2 L1L

y
3�L3L

y
1

� �
þI3 L2L

y
1�L1L

y
2

� �
ITdet Mð Þ ;

(4)

Dhr;y¼
Dyr

zod

¼
I1 L2L

y
3�L3Lx

2

� �
þI2 L3Lx

1�L1Lx
3ð ÞþI3 L1Lx

2�L2Lx
1ð Þ

ITdet Mð Þ
:

(5)

Equations (3)–(5) impose no restrictions on the positions at

which the images are acquired so long as the three equations

are linearly independent.28 However, since even small angles

violate the linear approximation at the peak of the IF, and

previous studies, both in ABI28 and in EI,17 have shown that

certain positions allow for a much improved signal-to-noise

ratio (SNR), mixed intensity images were only acquired on

linear regions of the IF.

Experimental verification of the proposed method was

performed using a rotating anode, Mo-target source (Rigaku

007HF) operated at 35/25 kVp/mA with focal spot full-width

at half maximum (FWHM) dimensions of 100 lm in y and

70 lm in x. The amorphous selenium Anrad SMAM flat

panel detector was used, which has a pixel size of 85 lm.

Both masks were skipped29 (illuminating every other pixel

in order to reduce cross-talk effects), with p1¼ 120 lm and

p2¼ 166 lm, and aperture sizes of 11 and 15 lm, respec-

tively. The absorbing regions consist of a 30 lm layer of

gold electroplated upon a 500 lm thick graphite substrate.

The two L-shaped masks M1 and M2 were aligned with

the detector pixels along the optical axis and were placed at

1.44 m and 1.99 m from the source, respectively. To obtain

the experimental 2D-IF shown in Fig. 1(c), the pre-sample

mask was scanned (with the detector mask held fixed) over

a span of 40 lm in 8 lm steps in x and 5 lm steps in y. The

pre-sample mask was then placed at the three different

imaging positions shown in Fig. 1(c), where images of a

pair of crossed PMMA cylinders (radii 1.5 6 0.3 mm) were

acquired. It must be noted that the spatial resolution of each

image was improved via dithering, i.e., scanning the sample

with 6 � 6 sub-pixel steps of 20 lm, with an exposure time

of 10 s per dithering step. Eqs. (3)–(5) were then used to

perform the phase retrieval; the results are displayed in

Fig. 2.

Fig. 2(a) shows the retrieved transmission image, whilst

Figs. 2(b) and 2(c) represent the retrieved refraction angle

images in the two orthogonal directions at the sample plane.

Furthermore, Figs. 2(d)–2(f) show a good agreement between

the experimentally measured and theoretical profiles for the

“apparent absorption” and refraction images of the PMMA

FIG. 1. (a) A standard 1D edge illumination set-up, (b) an optical micro-

graphic image of the 2D detector mask (period¼ 166 lm), and (c) the illu-

mination function obtained by raster scanning the pre-sample mask

(period¼ 120 lm) with respect to the detector mask. The three imaging posi-

tions are indicated on the 2D illumination function.

204105-2 Kallon et al. Appl. Phys. Lett. 107, 204105 (2015)
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cylinders, demonstrating the approach’s quantitativeness. The

peaks present at the very edges of the experimental profile of

the cylinder in Fig. 2(d) represent a phase enhancement which

exists because the slowly varying phase assumption of the

algorithm is not satisfied at the very edges of an object.30 It is

worth noting that the horizontal and vertical wires disappear

in Figs. 2(b) and 2(c), respectively, since they induce refrac-

tion only along the “non-retrieved” direction.

While a direct 1D integration of either refraction

image would yield the phase of that object, this is usually

accompanied by severe streak artefacts (see supplementary

material).23,31,32 Moreover, in cases where the boundary con-

ditions are not known, e.g., when the object is larger than the

field of view, 1D phase integration may not be possible.

However, Arnison et al.31 and Kottler et al.23 have demon-

strated that the two differential phase images can be com-

bined in Fourier space to retrieve the phase Uðx; yÞ; without

unfavourable artefacts and regardless of the boundary condi-

tions. This is achieved by performing the Fourier transform

of the complex sum of the two differential phase images in

Fourier space, dividing it by their spatial frequencies ðk; lÞ
and then taking the inverse Fourier transform

U x; yð Þ ¼ F�1
F Ihr ;x þ iIhr ;y

� �
2p k þ ilð Þ

" #
x; yð Þ: (6)

An image of the integrated phase Uðx; yÞ, calculated using

Figs. 2(b) and 2(c), is shown in Fig. 3(a), and the average

phase retrieved profiles are displayed in Figs. 3(b) and 3(c).

While mitigating the streak artefacts common to 1D phase

integration, the image suffers from some low frequency

artefacts, which can potentially arise from an asymmetry in

the differential phase profile. It has been shown by Hagen

et al. that this asymmetry can be caused by the undersampling

of an object.33 Furthermore, the denominator in Eq. (6) acts as

a high frequency filter in Fourier space, which amplifies low

frequencies and has been known to impose an artificial back-

ground on the image.34 In fact, the presence of these artefacts

is a well-known problem in phase integration and has been

treated by Langer et al.35 These can be removed by using a

priori information of the sample geometry, or using a

regularization-based algorithm.36

FIG. 2. Retrieved images for two crossed PMMA cylinders: (a) transmission, (b) refraction image along the horizontal direction, and (c) refraction image along

the vertical direction. Comparisons between the experimental and theoretical profiles are shown for (d) transmission, (e) refraction along the horizontal direc-

tion, and (f) refraction along the vertical direction.

FIG. 3. (a) Integrated phase image of the crossed PMMA cylinders calcu-

lated using the Fourier method on the two differential phase images in Figs.

2(b) and 2(c). (b) and (c) show the average horizontal and vertical integrated

phase profiles extracted from the regions shown in (a), respectively.

204105-3 Kallon et al. Appl. Phys. Lett. 107, 204105 (2015)
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Furthermore, the developed method can be extended to

retrieve the two-directional ultra-small angle x-ray scattering

(USAXS) images. Scattering is assumed to be a stochastic

process taking place at the sub-pixel scale. A full probability

distribution of scattering angles SðDhs;x;yÞ is assumed to be

collected at each pixel and can be modelled as a normalised

Gaussian centred at zero,28,37 i.e.,
Ð

SðDhs;x;yÞdðDhsÞ ¼ 1,

and
Ð
ðDhsÞSðDhs;x;yÞdðDhsÞ ¼ 0. The width of the distribu-

tion is represented by its standard deviation, r2
Dhs;x;y
ðx; yÞ

¼
Ð
ðDhsÞ2SðDhs;x;yÞdðDhsÞ,37 and physically manifests as a

broadening of the beam after the sample due to scattering.

Although the choice of a Gaussian function may be seen as

somewhat arbitrary, since several other non-Gaussian func-

tions could be used to model the scattering function, our

work on 1D EI has shown that, at least to first approximation,

a Gaussian function can be used to fit the retrieved scattering

function.14 For this reason, and especially considering the

preliminary nature of this investigation, we have simply

extended that treatment to the 2D case.

In the presence of scattering and refraction, a 2D

second-order Taylor expansion can be used to describe the

effects on the measured intensity

In ¼ IT

"
Lnþ Lx

nDxr þ Ly
nDyr

þ
 

Lxx
n

1

2
Dx2

r þ r2
x

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

xs;r

þLyy
n

1

2
Dy2

r þ r2
y

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ys;r

þLxy
n DxrDyr

!#
;

(7)

where Lj;k
n indicates @2Ln=@j@k at n ¼ 1� 6 positions about

the centre of the illumination function.

The first three terms within the brackets in Eq. (7) have

the same meaning as those shown in Eq. (1); in addition,

rx ¼ zodrDhs;x
and ry ¼ zodrDhs;y

are the apparent shifts of

the illumination function, which arise due to its broadening,

as a result of scattering. Note that rx is a distance while

rDhs;x;y
represents an angle. There are five unknowns to

retrieve, but in order to derive an analytical solution, we treat

the final term as an additional independent variable, thus

imposing the need for six input images. The system can then

be solved in a similar manner as Eq. (2), which enables the

extraction of the two-directional scattering quantities

r2
Dhs;x
¼ rx

zod

	 
2

¼ 2xs;r � Dxrð Þ2

z2
od

; (8)

r2
Dhs;y
¼ ry

zod

	 
2

¼ 2ys;r � Dyrð Þ2

z2
od

: (9)

The relation between the final mixed term and the previous

ones in Eq. (7) can be used to develop an approach where

only 5 input images are required instead of 6, and this will

be explored in future developments. In order to experimen-

tally validate the above retrieval method for scattering, an

additional experiment was performed with two orthogonally

overlapped pieces of wood. Using Eqs. (7)–(9), the “apparent

absorption,” 2-directional refraction, and scattering images

were retrieved and are displayed in Fig. 4. Figs. 4(a)–4(c)

show the transmission and refraction images, while Figs.

4(d) and 4(e) show a map of the distribution of the sample’s

scattering angles in the x and y directions, respectively. Fig.

4(a) shows more phase enhancement along x than along y;

this can be attributed to the difference in the source size

along the respective directions. In fact, the difference in

source size has been shown to lead to different differential

phase sensitivities.17 The wood’s microstructure is highly

anisotropic, possessing features orientated along preferential

directions; thus, the two orthogonal pieces of wood appear

differently in images depicting the refraction and scattering

along the horizontal and vertical directions, respectively. In

particular, the horizontal structures tend to disappear in Figs.

4(b) and 4(d), while the same occurs for the vertical struc-

tures in Figs. 4(c) and 4(e). Fig. 4(f) shows the phase

retrieved image of the crossed wooden splints, which was

calculated by using the two differential phase images in Figs.

4(b) and 4(c) and Eq. (6).

In conclusion, we described a laboratory implementa-

tion of the EI XPCi technique capable of achieving 2D

phase and dark field sensitivity using a conventional x-ray

source. By exploiting the similarity of the physical princi-

ples between ABI and EI, we developed an algorithm that

resolves the refraction and scattering signals in both direc-

tions, and proved the quantitativeness of the technique. In

addition, the possibility of obtaining a map of the sample

phase from a combination of the two-directional differential

phase images was demonstrated, which effectively elimi-

nates the streak artefacts typically encountered from direct

integration of the 1D differential phase image. The method

also lends itself naturally to more sophisticated dark-field

analysis approaches, like those recently proposed by

Modregger et al.,38 which again will be the subject of future

investigations.
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