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The current paper deals with analytical bunch compression studies for FLUTE whose results are
compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of
approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of
the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime.
In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the
subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric
investigations of the bunch compressor where space charge effects and the backreaction of bunches with
coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge
effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from
simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor
and of bunch compression, in general.
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I. INTRODUCTION

FLUTE is a linac-based electron accelerator which is
presently being built at the ANKA Synchrotron Radiation
Facility at the Karlsruhe Institute of Technology [1–12].
The acronym FLUTE stands for the German expression
Ferninfrarot Linac- Und Test-Experiment translated to
English as “Far-infrared Linac- and Test Experiment.”
FLUTE has a design energy of approximately 40 MeV
where the baseline machine layout of the first phase is
depicted in Fig. 1.
In the current design the electron source is a 2 1=2 cell

photocathode radiofrequency (rf) gun with a maximum
repetition rate of 10 Hz. Electrons are emitted by shooting a
pulsed Ti∶Sa laser with a fundamental wavelength of
800 nm on a copper cathode where its third frequency
harmonic will be used. The released electrons are then
accelerated to 7 MeV. The charge of the bunches produced
by the gun is planned to range from 1 pC to 3 nC. Upon
leaving the gun the beam is transversally focused by a
solenoid before entering the linac accelerating the electrons

to the design energy of approximately 40 MeV. Behind the
linac the beam is focused again by a doublet of quadrupole
magnets before it enters the bunch compressor consisting of
four dipole magnets.
One goal of FLUTE is to produce coherent synchrotron

radiation (CSR) in the terahertz (THz) range. To achieve
this, subpicosecond bunch lengths will be necessary where
the aim is to compress bunches to lengths in the femto-
second regime. For the past few years there has been a
growing interest in coherent THz sources due to the various
possibilities of using this kind of radiation both in research
and in application. The following four paragraphs do not
claim to be complete but will give some representative
examples.
In Ref. [13] it was shown theoretically that by applying

an external oscillating electric field to a sample of gra-
phene, it is possible to produce higher harmonic modes. At
room temperature this effect may occur for frequencies in
the THz regime. Therefore it could open the way to
graphene devices in THz electronics.
In a cuprate superconductor a special kind of soliton

was excited successfully by using intense and narrow-band
THz radiation [14]. If the generation, acceleration, and
stopping of such solitons is under control, these could be
exploited for transporting and storing information in such
composites.
The chemical composition BaTiO3 is ferroelectric, i.e.,

below some critical temperature it exhibits domains with a
spontaneous electric dipole moment. These domains are
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separated by domain walls that can be manipulated by
applying a strong, external electric field. In Ref. [15] the
physical mechanisms occurring at microscopic scales are
investigated and the results are compared with experimental
data. If the microscopic mechanisms of moving domain
walls are better understood, such ferroelectric materials
could be the basis for ultrafast computer memories.
By experiment it was shown that the magnetization

direction of thin cobalt films can be reversed by short THz
pulses, if the magnetization vector lies in the plane of the
film [16]. Some (but not all) characteristics of the exper-
imental results can be described by a simple model based
on the Landau-Lifshitz equation. A better understanding of
the physics and a further development of this method could
lead to novel devices used for magnetic recording at high
data rates.
The applications have two characteristics in common: they

need high electric and magnetic field strengths (in the order of
magnitude of MV=m and several hundred kA=m, respec-
tively) and they happen on ultrashort time scales (picosec-
onds). These properties can be provided by pulses of coherent
synchrotron radiation in the THz regime (see, e.g., [4]).
In FLUTE the compression of the electron bunches shall

be achieved with a magnetic bunch compressor. This
compressor is a D-shape chicane consisting of four dipole
magnets with each of them having the same magnetic field
strength value. The directions of the field in the first and
fourth dipole magnet are opposite to the directions in the
second and third magnet. The distances between the first
two and the last two magnets are supposed to be equal.
Since the electrons travel on curved trajectories inside

this chicane they emit synchrotron radiation. If the bunch
length is much smaller than the wavelength of the radiation,
wave trains emitted from different electrons are in phase
with respect to each other and they can interfere

constructively. The radiation produced is then coherent
and its intensity grows with the number of radiating
electrons squared. Hence, the FLUTE chicane serves the
purpose of compressing the bunches and is the place where
the coherent radiation will be generated.
Due to space charge effects and the self-interaction of

bunches with their own coherent radiation field a com-
pression of bunches to a length of several femtoseconds is a
challenging task—not only for FLUTE but for a number of
other future machines as well. That is why a better
understanding of the chicane is of paramount importance.
Therefore, the scope of the current paper is to provide a
framework for analytical bunch compression studies for
FLUTE. The analytical results will also be compared to
results obtained with the simulation tool Astra [17].
The paper is organized as follows. In Sec. II bunch

compression by path length differences in the FLUTE
chicane is discussed. Those studies are restricted to the pure
geometrical properties of the chicane where space charge
forces and the emission of CSR is neglected. Subsequently
the transfer matrix method is employed in Sec. III to describe
bunch compression and the results are compared to the
outcome of simulations. In this context a number of hitherto
unknown transfer coefficients at first- and second-order
perturbation theory is derived. Section IV is dedicated to
investigating bunch compression with space charge effects
switched on. We introduce a simple model to describe space
charge forces and compare our results with simulations
again. Finally we conclude on the results in Sec. V.
Calculational details are relegated to Appendixes A and B.

II. BUNCH COMPRESSION BY PATH
LENGTH DIFFERENCES

In the current section analytical results on bunch com-
pression in the FLUTE chicane are obtained, where a draft

FIG. 1. Baseline layout of FLUTE in the first phase, where the position of the various parts of the machine are shown on the z-axis.
The dashed line is the trajectory of an electron bunch. Such bunches are produced in a photocathode gun and accelerated by the linac to
the design energy of 40 MeV. The rf of 3 GHz for the gun and the linac is delivered by a klystron. Solenoids and quadrupole magnets are
used to focus the beam in the transverse directions. We plan to place diagnostics at certain positions along the machine to extract
information on the transverse and longitudinal beam dimensions. Electron bunches are supposed to be compressed by a bunch
compressor consisting of four rectangular dipole magnets. After compressing, the bunches produce coherent THz radiation that is
coupled out before the electrons hit the beam dump.
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of the latter is shown in Fig. 2. To make this approach
feasible, the D-shape chicane is considered to consist of
ideal dipole magnets. These are assumed to have a
homogeneous magnetic field with flux density B inside
the poles which immediately drops to zero outside. In the
first and fourth magnet the field is to point along the
negative y-axis, whereas in the second and third magnet it
points along the positive y-axis.
The bending radius in a chicane magnet is given by

R ¼ p=ðeBÞ, where p ¼ γðvÞmev is the relativistic elec-
tron momentum with the Lorentz factor

γðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ; β ¼ v
c
: ð2:1Þ

Hereme is the electron rest mass, v the electron propagation
velocity, and c the speed of light. An electron has the
charge q ¼ −e with the elementary charge e > 0. The
bending angle can be computed as α ¼ arcsinðLmag=RÞ.
First of all, space charge effects and the backreaction of

the bunch with its CSR will be neglected. As a result, all
considerations of the current chapter are of geometrical
nature. The reduction of the bunch length within the
chicane then essentially results from the path length
difference of electrons with different momenta. The length
of the trajectory of an electron traveling with momentum p
is given by

LðpÞ ¼ 4R arcsin
�
Lmag

R

�
þ 2Lspaceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðLmag=RÞ2
q þ Ldrift;

R ¼ p
eB

: ð2:2Þ

Now the difference between the traveling lengths of two
electrons is considered. The first electron is assumed to
travel with the design (reference) momentum p and the
second electron with a momentum that deviates from p by
Δp. For Δp ≪ p a Taylor expansion can be performed
with respect to the dimensionless normalized momentum
deviation δ≡ Δp=p ≪ 1. Due to the limited extension of
the beam pipe, the bending angle α must be much smaller
than π=2. This translates to the necessary condition that
Lmag ≪ R. Hence, it makes sense to perform a second
expansion with respect to the small ratio Lmag=R. That
leads to a transparent result for the path length difference:

ΔL≡ Lðpþ ΔpÞ − LðpÞ

¼ −2
�
Lmag

R

�
2
�
2

3
Lmag þ Lspace

�
δþO½δ2; ðLmag=RÞ4�:

ð2:3Þ

It is evident that ΔL < 0 for δ > 0. This is clear since the
bending angle of an electron with a larger momentum is
smaller resulting in a shorter path length traveled by the
corresponding particle.
We decided to perform the following calculations

throughout the paper for the two extreme beam dynamics
cases that were simulated with Astra: a bunch with the high
charge of 3 nC and a bunchwith the very low charge of 1 pC.

A. Electron trajectory inside the chicane

The longitudinal phase space distribution of electron
bunches produced at FLUTE, i.e., their longitudinal
momentum deviation Δp=p as a function of the longi-
tudinal particle position Δs with respect to the reference
particle has certain characteristics directly after the linac.
These are paramount for compression. In addition to a
momentum deviation based on statistical uncertainties, the
longitudinal phase space shows a correlated momentum
deviation (chirp). This means that the average momentum
deviation as a function of Δs is not zero but depends on Δs
[see Fig. 3(a) for a typical tracked 3 nC bunch and
Fig. 3(b) for a 1 pC bunch before the chicane]. In this
paper the bunch length σs is computed as the root mean
square (rms) of the Δs-values. The rms momentum
deviation σp of a bunch is computed analogously. In fact,
the Greek letter σ will always indicate an rms quantity.
Since the momenta of particles at the head of the bunch

lie below the momentum of the reference particle, the
corresponding particles travel with a lower velocity com-
pared to the tail of the bunch where the particle momenta lie
above the momentum of the reference particle. The dis-
tributions in Fig. 3 were obtained by simulating the
development of electron bunches from their generation
at the cathode to the linac exit with the help of Astra. These
are the bunches that we intend to use in the framework of
the paper. Note that the typical length scale of a 3 nC bunch

FIG. 2. Draft of the D-shape chicane foreseen for FLUTE. A
Cartesian coordinate system is used where its labels x and y
(orthogonal to the drawing plane) correspond to the two trans-
verse directions and the label z corresponds to the longitudinal
direction. The chicane is assumed to lie in the x − z-place and the
z-axis points along the direction of the electron beam right before
the chicane. The plain (blue) curve depicts one possible electron
trajectory. The length of a single chicane magnet is denoted as
Lmag. The distance between the first two and the last two magnets
is called Lspace, whereas the distance between the second and the
third magnet is denoted as Ldrift. The angle α is the bending angle
of each magnet and R is the bending radius.
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directly before the FLUTE chicane lies in the picosecond
regime, whereas the length of the 1 pC bunch is several
hundred femtoseconds.
Now we are interested in the longitudinal phase space

after the chicane for the 3 nC and the 1 pC bunches used
previously. Sending each electron along its own trajectory
leads to the results shown in Figs. 3(c) and 3(d), respec-
tively. Note that the units used for the horizontal axis are
now femtoseconds. The rms bunch length was reduced by a
factor of 10.9 for the 3 nC bunch and a factor of 34.9 for the
1 pC bunch. The double-s structure visible in Fig. 3(c)
results from the superimposed bumps in the initial distri-
bution shown in Fig. 3(a). Since all particle positions are
reduced by compression this structure is now more evident
than it had been in the latter figure.
Both the final bunch lengths and the bunch profiles of the

analytical calculation in Figs. 3(c) and 3(d) agree well with
Astra simulation results. For the 3 nC bunch there is a
deviation of the final bunch length of approximately 0.9%
and for 1 pC it is 13%, which corresponds to around 2 fs for
both cases in absolute numbers. This is because dipole
fringe fields are neglected in the analytical method,

whereas in Astra they are described by a simple analytically
defined dependence on distance.

B. Sector chicane as a (hypothetical) example

It is planned to construct the FLUTE bunch compressor
using rectangular dipole magnets. However for theoretical
reasons, in this paper we additionally intend to consider the
characteristics of a bunch compressor made up of sector
dipole magnets. A sector dipole is characterized by the
property that the reference particle both enters and exits the
magnet perpendicularly to its edges. This is not necessarily
the case for a rectangular magnet.
The principle of a chicane constructed with sector dipole

magnets is shown in Appendix A 1. The free parameters of
such a chicane are the bending angle α, the bending radius R,
and the distances Lspace and Ldrift. We can then derive a
parametric representationof the reference trajectory.The result
can be found in Appendix A 1 as well. Using this representa-
tion we compute the path length difference of two trajectories
with normalized momentum deviation δ ¼ Δp=p. At first
order in δ and for bending angles α ≪ π=2 we obtain

FIG. 3. Longitudinal phase space plots of 3 nC and 1 pC bunches (obtained in simulations) at the position z ¼ 8.19 m before the
chicane (a), (b) and at z ¼ 12.65 m behind the chicane (c), (d). Here the normalized momentum deviation is plotted against the distance
Δs0 of a bunch particle with respect to the bunch center corresponding to the mean of all distances. The spatial bunch coordinates are
divided by the speed of light to convert them to the dimension of time. Both distributions are centered on the mean relative momentum
deviation at the vertical axis as well. (This procedure is conducted for all such distributions.) The rainbow color code represents the
number of particles ranging from one (blue) to the maximum (red). The substructures for the 3 nC bunch, i.e., the two small
superimposed bumps originate from the emission of the particles at the cathode. The bunch parameters are Qb ¼ 3 nC, σs ¼ 2.30 ps,
σp ¼ 1.87 × 10−2 (a), Qb ¼ 1 pC, σs ¼ 452 fs, σp ¼ 4.79 × 10−3 (b), Qb ¼ 3 nC, σs ¼ 211 fs (c), and Qb ¼ 1 pC, σs ¼ 12.9 fs (d).
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ΔL ¼ −2α2
�
2

3
Rαþ Lspace

�
δþOðα4; δ2Þ: ð2:4Þ

If the chicane parameters α,R, andLspace are chosen such that
they correspond to the parameters of the chicane in Fig. 2, the
momentum compaction factor for δ ≪ 1 and α ≪ π=2 is the
same for both types of chicanes. However, note that effects
from the fringes of the dipole magnets have been neglected in
this derivation. We will come back to the sector chicane at a
later stage of the paper.

III. TRANSFER MATRIX FORMALISM
APPLIED ON THE FLUTE CHICANE

In the previous chapter the FLUTE bunch compressor
was investigated analytically by deriving parametric rep-
resentations for particle trajectories in the compressor. The
advantage of this approach is that all geometrical effects are
taken into account. However this technique also has a
number of disadvantages. First of all, the dipole field
strength of the chicane magnets has been assumed to fall off
to zero directly outside the magnet, i.e., we have used a
hard-edge model. This is not the case for real magnets
having a nonzero fringe field outside of the iron yoke.
Second, the calculational time of this method is rather large
since the trajectory for each electron has to be computed
separately. This may already take several minutes for 5000
particles, which is the typical number of particles that
we use.
For these reasons in the current section we are interested

in applying the transfer matrix formalism. In general,
each electron within a bunch can be described by a six-
dimensional phase space vector Z, which reads as follows:

Z ¼
�
Δx;

px

p
;Δy;

py

p
;Δs; δ

�
T

≃ ðΔx; x0;Δy; y0;Δs; δÞT: ð3:1Þ

These components give positions in configuration space
and momentum space with respect to a reference particle.
The variables Δx and Δy are the two transverse offsets, x0
and y0 are the transverse angles, Δs is the longitudinal
position, and δ ¼ Δp=p the normalized momentum
deviation.
In the framework of perturbation theory the equation of

motion for an electron is not solved exactly, but as an
expansion in the deviations Δx, x0 etc. from the reference
trajectory. Each part of an accelerator transforms an initial
phase space vector Zð1Þ to a final vector Zð2Þ. Expanding
this transformation to second order in the phase space
vector it can be written with the help of a transfer matrix R
(a second-rank tensor) and a third-rank transfer tensor T
[18,19]:

Zð2Þ
j ¼ Zð1Þ

j þ
X6
k¼1

RjkZ
ð1Þ
k þ

X6
k;l¼1

TjklZ
ð1Þ
k Zð1Þ

l þ � � � : ð3:2Þ

If an electron propagates through an element designated by
(a) and followed by an element (b) the resulting transfer
matrix is given by Rc ¼ RbRa. The third-rank tensor of a
combination of two accelerator components (a) and (b) is
given by [19]

Tc
ijk ¼

X6
l¼1

Rb
ilT

a
ljk þ

X6
l¼1

X6
m¼1

Tb
ilmR

a
ljR

a
mk: ð3:3Þ

This equation involves both the transfer matrices and the
third-rank tensors of the corresponding accelerator
components.
The chicane transforms the chirp of the bunch.

Restricting ourselves to the two-dimensional longitudinal
phase space spanned by ðΔs; δÞ leads to the following
(well-known) transformation at linear order:

Zð2Þ ¼ RZð1Þ; Zð1Þ ≡
�
Δsð1Þ

δ

�
;

Zð2Þ ≡
�
Δsð2Þ

δ

�
; R ¼

�
1 R56

0 1

�
; ð3:4aÞ

R56 ¼ 2

�
Lmag

R

�
2
�
2

3
Lmag þ Lspace

�
: ð3:4bÞ

Herein Δsð1Þ and Δsð2Þ are the longitudinal positions of a
bunch particle before and after compression, respectively.
The momentum compaction factor R56 > 0 relates the
longitudinal position to the normalized momentum
deviation. The expression stated for R56 holds for
Lmag ≪ R. It can be checked that for the total transfer
matrix of the chicane, R51 and R52 are approximately zero
in the same limit. This explains why initial transverse
offsets and angle deviations have a small impact on the final
bunch length producing only effects at higher order.

A. First-order perturbation theory

First of all, we will concentrate simply on the transfer
matrices R that are taken from [19]. The notation used in
[18,19] will be kept with some minor modifications that
will be stated in the corresponding context. For the FLUTE
chicane the transfer matrices of a drift and that of a
rectangular dipole are needed. For a drifting particle both
Δx and Δy increase with the length of the drift whereas the
transverse angles x0 and y0 are not modified. Since a particle
travels on parts of a circle through a sector magnet, the
corresponding transfer matrix involves trigonometric func-
tions. If the particle does not enter or exit the dipole magnet
perpendicularly to its surfaces, magnetic fringe fields have
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to be taken into account. The drift transfer matrix involves
the entrance and exit angles of the particle with respect to
the magnet edges.
The bunch profiles and final bunch lengths obtained by

first-order perturbation theory differ from the Astra results
by quite some amount. For the 3 nC bunch the deviation is
14% and for the 1 pC bunch it is even 43%. This shows that
the transfer matrix formalism at first order in the momen-
tum deviation does not suffice to reproduce the Astra

simulation output.

B. Second-order corrections

The previous section dealt with the momentum com-
paction factor at first-order perturbation theory. We are now
interested to compute the second-order contribution of the
path length difference in the chicane, i.e., the contribution
proportional to δ2. It is given by the tensor coefficient T566

and can be obtained from Eqs. (2.2) and (2.3) by including
terms in the Taylor expansion up to second order in δ. For
Lmag ≪ R it reads

ΔL≡ ΔLð1Þ þ ΔLð2Þ þ � � �

¼ −2
�
Lmag

R

�
2
�
2

3
Lmag þ Lspace

�
δ

þ
�
Lmag

R

�
2

½2Lmag þ 3Lspace�δ2 þ � � � ; ð3:5Þ

where ΔLðnÞ denotes a correction proportional to δn. From
the general relation ΔL ¼ R56δþ T566δ

2 þ � � �, the coef-
ficient T566 can be directly obtained by comparison:

T566 ¼
�
Lmag

R

�
2

½2Lmag þ 3Lspace� ¼ −
3

2
R56: ð3:6Þ

Note that T566 has the same order of magnitude as R56 but it
has a different sign. These results match with what was
obtained in [20].

Now let us compare the bunch profiles obtained from
the transfer matrix formalism at second order in Δp=p to
the Astra simulation output. In Figs. 4(a) and 4(b) the
bunch profiles for the bunch charges 3 nC and 1 pC,
respectively, are shown. The rms bunch length for 3 nC is
approximately 7% larger than the Astra result whereas the
bunch length for 1 pC is 10% smaller. In comparison to
perturbation theory at first order in Δp=p the final bunch
profile at second order agrees much better with the
simulations. The first-order contribution has the trend to
underrate the final bunch length. This is corrected by the
additional T566 contribution having the opposite sign as the
R56 term.
In this context we intend to compute T566 of the chicane

by using Eq. (3.3). The latter equation decomposes into the
first-order and second-order transfer coefficients of the
individual components of the chicane such as the bending
magnets and drifts. However not all of the needed coef-
ficients, which relate path length differences to differences
in angles and the momentum deviation, can be found in the
literature. At first we performed a computation according to
Eq. (3.3) showing that the result of Eq. (3.6) cannot be
obtained with the sets of coefficients listed in, e.g., [18,19].
For this reason we conclude that the sets of coefficients
relating the path length difference to the five remaining
phase space variables are not complete. Hence the goal is to
derive the missing ones as follows.
For the derivation consider Fig. 5, which shows the

particle trajectories in the first two dipole magnets of a
bunch compressor. Both the FLUTE chicane consisting of
rectangular dipole magnets and a hypothetical chicane of
sector dipole magnets is considered. The regions where path
length differences at second order in δ occur are encircled.
The method is to extract the relevant coefficients from the
trajectories, i.e., from the solutions of the equations of
motion. It can deliver results quite fast provided that the
solution is on hand, which is the case here. Note that if the
exact solutions are not available the technique of Lie

FIG. 4. Longitudinal phase space plots of 3 nC and 1 pC bunches (obtained in simulations) after the chicane. The profiles shown were
computed by using the transfer matrix formalism at second order in Δp=p using R56 of Eq. (3.4) and T566 of Eq. (3.6). The bunch
parameters are Qb ¼ 3 nC, σs ¼ 214 fs (a) and Qb ¼ 1 pC, σs ¼ 11 fs (b).

M. SCHRECK AND P. WESOLOWSKI Phys. Rev. ST Accel. Beams 18, 100101 (2015)

100101-6



algebraic maps is more suitable [19,21]. However, we will
not follow the latter approach in this paper.
The following two sections are rather technical. Readers

who are only interested in the results may skip them and
look at Table I where the results for rectangular dipole
magnets are summarized.

1. Rectangular dipole magnets

First we consider the rectangular D-shape bunch com-
pressor that is planned for FLUTE [see Fig. 5(a)]. This
chicane has a mirror symmetry with respect to an axis that
is parallel to one of the transverse axes and has a distance

2Lmag þ Lspace þ Ldrift=2 from the left edge of the first
magnet. The path length difference of the chicane from its
start to the symmetry axis mentioned is 1=2 of the result
given by Eq. (3.5). Therefore it is sufficient to consider only
the first two magnets. By doing so, we are interested in the
origin of the terms that make up ΔLð2Þ. The comparison of
terms is understood to be based on the assumptions β ¼
v=c ¼ 1 and α ≪ π=2, which will not be mentioned for
every instance.
(1) The first difference in path lengths at order δ2 comes

from region (1) in Fig. 5(a), i.e., it occurs in the vicinity of
the exit face of the first dipole magnet. Computing the
difference in path length within the magnet as a function of
δ results in

ΔLrec ¼ Rðα − tan αÞδþ R
2
ðtan3αÞδ2 þOðδ3Þ: ð3:7Þ

Note that the first-order term in δ corresponds to the
element R56 of the sector dipole matrix with n ¼ 0
(neglecting magnetic field inhomogeneities). The only
difference is the occurrence of tan α instead of sin α.
However both functions coincide for bending angles
α ≪ π=2, which is the case for the FLUTE chicane. The
second term of Eq. (3.7) then leads to

ΔLð2Þ
1 ¼ ΔLð2Þ

rec

¼ 1

2

�
Lmag

R

�
2

Lmagδ
2 þO½ðLmag=RÞ4�: ð3:8Þ

Performing the analogue computation for a sector magnet
we obtain the following result for the path length differ-
ence:

ΔLsec ¼ Rðα − sin αÞδ − R
6
ðsin3αÞδ3 þOðδ4Þ: ð3:9Þ

Contrary to Eq. (3.7) there is no term proportional to δ2.
Therefore the path length difference at second order in δ in
Eq. (3.7) is not related to the body of the magnet. That is

FIG. 5. Particle trajectories inside the first two chicane magnets.
The reference trajectory for a particle momentum of p ¼
40.66 MeV is shown in blue. The green trajectory is that for a
particle with lower momentum pþ Δp ¼ ð1 − 0.09Þp. The
particle traveling along the red trajectory has a higher momentum
pþ Δp ¼ ð1þ 0.09Þp. The left panel (a) shows the trajectories
in a chicane consisting of rectangular dipole magnets with
Lmag ¼ 0.2 m, Lspace ¼ 0.3 m, Ldrift ¼ 1.0 m and the hypotheti-
cal bending radius R ¼ 0.25 m. The latter exaggerated value has
been chosen such that the difference in the path lengths becomes
visible. The right panel (b) shows the trajectories in a chicane of
sector bending magnets. Here the chicane parameters are chosen
such that the path length of the reference trajectory is equal to the
path length of the corresponding trajectory in (a). The regions
where path length differences proportional to δ2 originate from
are encircled and marked by (1), (2), (3), and (4). The yellow
areas show the dipole magnets.

TABLE I. Path length differences at second order in δ for the chicane consisting of rectangular dipole magnets. The first two columns
show the contribution to the path length difference. The third column presents how each contribution can be expressed via the transfer
matrix and third-rank tensor coefficients. The last two columns list the individual matrix and tensor coefficients plus their specific
values.

Contribution Composition Coefficient Value

ΔLð2Þ
1

L2
mag=ð2RÞ Texit fringe

566 Texit fringe
566

tan2ðαÞ=ð2hÞ
ΔLð2Þ

2
L2
magLspace=ð2RÞ Tdrift

522 ðRexit fringe
26 Þ2 Tdrift

522
L=ð2βÞ

Rexit fringe
26

tan α

ΔLð2Þ
3

L2
magLspace=R ðRentr: fringe

52 ÞðTexit fringe
266 Þ Rentr: fringe

52
L tan α

Texit fringe
266

− tan α

ΔLð2Þ
4

L3
mag=ð2RÞ Texit fringe

566 Texit fringe
566

tan3ðαÞ=ð2hÞ
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why the magnet fringe must deliver a contribution to the
path length difference proportional to δ2. This is described
by a tensor coefficient T566 whose value can be obtained
from Eq. (3.7):

Texit fringe
566 ¼ 1

2h
tan3 α: ð3:10Þ

Such a coefficient should be taken into account for the exit
fringe of a rectangular dipole magnet with curvature h ¼
1=R and bending angle α.
(2) The path length difference in the region between the

first and second dipole magnet has two main contributions
at second order in δ. The origin of the first contribution is
given by region (2) in Fig. 5(a). It is related to the exit angle
of the first dipole magnet with respect to the reference
trajectory as a function of δ. The latter results from the
scalar product of the corresponding tangent vectors t̂ of the
trajectories at the magnet exit:

Δϕ ¼ arccosft̂½Rþ ΔR; αðRþ ΔRÞ� · t̂½R; αðRÞ�g

¼ ðtan αÞδ − tan α

�
3þ cosð2αÞ

4cos2α

�
δ2 þOðδ3Þ: ð3:11Þ

From Eq. (3.11) we can read off the following transfer
matrix and third-rank tensor coefficients that relate Δϕ to
the momentum deviation and to its square, respectively:

Rexit fringe
26 ¼ tan α; ð3:12aÞ

Texit fringe
266 ¼ − tan α

�
3þ cosð2αÞ

4cos2α

�
¼ − tan αþOðα3Þ: ð3:12bÞ

At the exit of the first dipole magnet the momentum
deviation δ is translated to an angle Δϕ via Eq. (3.11).
This is a contribution at first-order perturbation theory in δ.
The path length difference between two drifts that enclose
an angleΔϕ is of second order in this angle. That is why the
aforementioned Δϕ then leads to a second-order path
length difference in the drift behind the first dipole magnet.
Using the first term of Eq. (3.11) we obtain

ΔLð2Þ
2 ¼ Lspace

cosðαþΔϕÞ−
Lspace

cosα

¼ ðΔϕð1ÞÞ2
2

Lspace

cosα
ð1þ 2tan2αÞ þOðδ3Þ

¼ 1

2

�
Lmag

R

�
2

Lspaceδ
2 þO½ðLmag=RÞ4δ2;δ3�: ð3:13Þ

The latter equation relates the path length difference of a
drift to the square of an angle with respect to the reference
particle. This is why it will be described by a product
T522R2

26 where R26 is given by Eq. (3.12a). The coefficient

T522 must be that of a drift but these are not listed in
[18,19]. However they are contained in the MAD-X Fortran

programming code [22] and are given by

Tdrift
126 ¼ L

2β
¼ Tdrift

162 ¼ Tdrift
346 ¼ Tdrift

364 ¼ Tdrift
522 ¼ Tdrift

544 ; ð3:14Þ

with β ¼ v=c and the length L of the drift space. We see
that for L ¼ Lspace the product Tdrift

522 ðRexit fringe
26 Þ2 corre-

sponds to Eq. (3.13).
(3) The second contribution for path length differences

proportional to δ2 in the drift space behind the first dipole
magnet is related to region (3) in Fig. 5(a). A trajectory
enclosing an angle Δϕ with the reference trajectory has an
additional length ΔL within the drift space because the
trajectory encloses a nonzero angle with the entrance
edge of the second dipole magnet. With the second-order
term in Eq. (3.11) we obtain a second-order correction to
the path length difference with respect to the momentum
deviation δ:

ΔLð2Þ
3 ¼ Lspace

cosðαþ ΔϕÞ −
Lspace

cos α

¼ Lspace

cos α
tan αjΔϕð2Þj þOðδ3Þ

¼ Lspace

cos α

�
3þ cosð2αÞ

4cos2α

�
ðtan αÞ2δ2 þOðδ3Þ

¼
�
Lmag

R

�
2

Lspaceδ
2 þO½ðLmag=RÞ4δ2; δ3�

¼ 2ΔLð2Þ
2 þO½ðLmag=RÞ4δ2; δ3�: ð3:15Þ

Since Eq. (3.15) involves a second-order angle the coef-
ficient responsible for this path length contribution must be
of first order, i.e., an R52. As it is related to the fringe of a
rectangular dipole magnet we obtain

ΔL ¼ ðL tan αÞΔϕ ⇒ Rentr: fringe
52 ¼ L tan α; ð3:16Þ

where L is the length of the drift space before the
corresponding dipole magnet. With L ¼ Lspace the product

ðRentr: fringe
52 ÞðTexit fringe

266 Þ is equal to the result of Eq. (3.15).

The sign of the angle in Texit fringe
266 of Eq. (3.12) has to be

chosen as negative in the first magnet leading to the correct
overall sign.
(4) Finally, we end up with region (4) in Fig. 5(a) leading

to a second-order correction that corresponds to the
correction of region (1):

ΔLð2Þ
4 ¼ ΔLð2Þ

1

¼ 1

2

�
Lmag

R

�
2

Lmagδ
2 þO½ðLmag=RÞ4�: ð3:17Þ
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Here it is related to the entrance fringe of the second dipole
magnet. So it can only come from

Texit fringe
566 ¼ 1

2h
tan3α: ð3:18Þ

Summing up ΔLð2Þ
i for i ¼ 1 � � � 4 and multiplying the

result by 2 leads to ΔLð2Þ of Eq. (3.5).

2. Sector dipole magnets

In the current section we are interested in the path
length difference at second order in δ for the hypothetical
bunch compressor made up of sector dipole magnets (see
Sec. II B). This further example will be studied for
academic reasons to understand the differences to the
D-shape chicane of rectangular magnets. The path length
difference at first and second order in δ is given by

ΔL ¼ −2α2
�
2

3
Rαþ Lspace

�
δþ α2ð2Rαþ 3LspaceÞδ2

þOðα4; δ3Þ: ð3:19Þ

From the previous equation we can extract the third-rank
tensor element for this chicane relating the momentum
deviation to the path length difference:

T566 ¼ α2ð2Rαþ 3LspaceÞ ¼ −
3

2
R56: ð3:20Þ

We see that this is connected to the matrix element R56 in
the same manner as for the chicane of rectangular magnets.
Analogous to Sec. III B 1 we now intend to derive the third-
rank tensor coefficients for sector dipole magnets such that
this result can be reproduced.
For the sector chicane we were also able to identify four

regions where path length differences originate from [see
Fig. 5(b)]. As we saw in Eq. (3.9) there is no path length
difference ΔL in a sector dipole magnet at second order in
the normalized momentum deviation δ. The major part of
ΔLð2Þ emerges at the second dipole magnet. Because of
transverse displacements Δx, which emerge at several
places, a particle travels an approximate path length
ðRþ ΔxÞα resulting in ΔL ¼ αΔx.
(1) The first angular displacementΔx1 already appears at

the exit fringe of the first dipole magnet, i.e., at region (1) in
Fig. 5(b). It is given by

Δx1 ¼ 2Rsin2
�
α

2

�
δþ 1

2
ðRsin2αÞδ2 þOðδ3Þ: ð3:21Þ

As indicated, this displacement leads to a longer path
length in the second dipole magnet. Its contribution at
second order in δ is

ΔLð2Þ
1 ¼ Δxð2Þ1 α ¼ 1

2
Rαsin2αδ2

¼ 1

2
Rα3δ2 þOðα5Þ: ð3:22Þ

From Eq. (3.21) we extract the transfer coefficients relating
the first transverse coordinate with the momentum
deviation:

Rsec
16 ¼ 2Rsin2

�
α

2

�
¼ Rð1 − cos αÞ;

Tsec
166 ¼

1

2
ðRsin2αÞ: ð3:23Þ

Neglecting magnetic field inhomogeneities we obtain from
the transfer matrix of the sector dipole that Rsec

51 ¼
− sinðαÞ=β with β ¼ v=c. For α ≪ π=2 and β ¼ 1 the
product ðRsec

51 ÞðTsec
166Þ corresponds to the result of Eq. (3.22).

(2) Any particle with normalized momentum deviation δ
exits the first dipole magnet with an angle Δϕ with respect
to the reference particle:

Δϕ ¼ ðsin αÞδþ ðsin αÞδ2

þ 1

12
½13 − cosð2αÞ�ðsin αÞδ3 þOðδ4Þ: ð3:24Þ

From the latter equation we obtain

Rsec
26 ¼ sin α; Tsec

266 ¼ sin α: ð3:25Þ

There is one contribution to ΔL at second order in δ that

coincides with ΔLð2Þ
2 obtained for the rectangular dipole

magnet. Consider region (2) in the drift space between the
first two magnets. A particle propagating along a trajectory
that encloses an angle Δϕ with the reference trajectory
travels a different path length at second order in δ. It
involves the first-order contribution of the angle Δϕ of
Eq. (3.24):

ΔLð2Þ
2 ¼ Lspace

cosðαþ ΔϕÞ −
Lspace

cos α

¼ ðΔϕð1ÞÞ2
2

Lspace

cos α
ð1þ 2tan2αÞ þOðδ3Þ

¼ ð1þ 2tan2αÞsin2α
2 cos α

Lspaceδ
2 þOðδ3Þ

¼ 1

2
α2Lspaceδ

2 þOðδ3; α4Þ: ð3:26Þ

Using Tdrift
522 ¼ Lspace=ð2βÞ of Eq. (3.14) the product

Tdrift
522 ðRsec

26 Þ2 equals Eq. (3.26).
(3) Due to the second-order contribution of Δϕ the drift

space between the first two magnets leads to a further
transverse displacement at the entrance of the second dipole
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magnet. This corresponds to region (3) in Fig. 5(b) and the
displacement reads

Δx2 ¼
Lspace

cos α
tanΔϕ ¼ Lspace

cos α
Δϕð2Þ þOðδ3Þ

¼ Lspace

cos α
sin αδ2 þOðδ3Þ: ð3:27Þ

It again translates to a path length difference at second order
in δ analogous to Eq. (3.22):

ΔLð2Þ
3 ¼ Δxð2Þ2 α ¼ α sin α

cos α
Lspaceδ

2

¼ α2Lspaceδ
2 þOðα4Þ: ð3:28Þ

Computing the product ðRsec
51 ÞðRdrift

12 ÞðTsec
266Þ with Rsec

51 ¼
− sinðαÞ=β, Rdrift

12 ¼ Ldrift (see the drift matrix in [19]), and

Tsec
266 of Eq. (3.25) results in ΔLð2Þ

3 .
(4) The fourth contribution to the whole ΔL proportional

to δ2 comes from the fact that a particle enters the second
magnet under the angle Δϕ with respect to the reference
particle. That is marked as region (4) in Fig. 5(b).

ΔLð2Þ
4 ¼ Rð1 − cos αÞΔϕð2Þ ¼ Rð1 − cos αÞ sin αδ2

¼ 1

2
Rα3δ2 þOðα5Þ: ð3:29Þ

This result agrees with ðRsec
52 ÞðTsec

266Þ where Tsec
266 is taken

from Eq. (3.25). The matrix element Rsec
52 ¼−Rð1−cosαÞ=β

is obtained from the transfer matrix of the sector dipole,
again neglecting field inhomogeneities.
Summing up ΔLð2Þ

i for i ¼ 1 � � � 4 and multiplying the
result by 2 leads to the second-order term in Eq. (3.19).
The results obtained are summarized in Table I. We have

demonstrated that the second-order coefficient T566 of the
total chicane, Eq. (3.6), can be obtained by using Eq. (3.3)
with the new coefficients found. The individual contribu-

tions ΔLð2Þ
i were tracked back to specific magnetic fringes,

angles with respect to the reference trajectory or transverse
displacements. These terms are made up of third-rank
tensor coefficients or products of transfer matrix elements
with tensor coefficients. Each of them must have a structure
“566” of free indices relating the momentum deviation
square to a path length difference. The procedure employed
demonstrates how hitherto unknown second-order transfer
coefficients of accelerator components being part of a
bunch compressor can be obtained directly by the following
recipe: (1) Set up the exact particle trajectory piecewisely
from the solutions of the equations of motion for each
individual component. (2) Compute the path length as a
function of the particle momentum and obtain T566 of
the total chicane from a Taylor expansion. (3) Use the
composition formula of Eq. (3.3) to calculate T566 of the
chicane based on an available list of first- and second-order

transfer coefficients. If both results match the list of
coefficients is complete for this purpose. (4) If the results
are different some coefficients may be missing. In this case
track back possible path length differences to different
entrance and exit angles of dipoles, different path lengths at
dipole fringes, etc. (5) Extract missing transfer coefficients
from the contributions found in the previous step.
By doing so, second-order coefficients can be computed

without relying on advanced methods of, e.g., [19,21].

IV. SPACE CHARGE EFFECTS

So far, the FLUTE bunch compressor has been consid-
ered merely from the geometrical point of view. We
investigated how a bunch evolves when each particle is
sent along its own trajectory through the chicane. The
results agree well with what is obtained from Astra simu-
lations with the space charge routine switched off.
Furthermore the FLUTE chicane was examined with the
transfer matrix formalism being a well-known tool in
accelerator physics. Within this perturbative method the
first order is not sufficient to reproduce the simulation
results, but the second-order terms in the momentum
deviation are necessary. In the analytical calculations
performed so far, both space charge effects and the back-
reaction of CSR on the bunch were neglected.
The next step lies in taking space charge forces into

account, i.e., the mutual interaction of bunch particles due
to the attraction and repulsion by their electromagnetic
fields. There are various tools available that treat space
charge effects numerically, e.g., by solving the Poisson
equation. Some examples are the already mentioned Astra

[17], CSRtrack [23], and PARMELA [24]. The approach within
this section is (semi)analytical and our goal is to provide a
set of formulas to estimate the amount of increase in bunch
length due to space charge forces. Our intention is to get
insights into the physical processes responsible for bunch
elongation. Thereby we follow the procedure described in
the fourth chapter of [25]. This will be applied to both the
3 nC and the 1 pC bunches considered before. As a starting
point, the influence of space charge forces on the bunch
will be estimated by simple principles. Every charged
particle beam can be considered as a plasma, i.e., as a
gas of charged particles. The space charge forces acting on
a particle moving in the transverse direction originate from
the electric and magnetic fields. Assuming a uniform,
cylindric particle distribution, these forces depend linearly
on the transverse coordinate x and they are related to what
is known as the plasma frequency ωp. The latter is given by

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e2n

ε0γ
3m

s
; n ¼ Qb

eπσxσy · ð2σsÞ
; ð4:1Þ

where e is the elementary charge, ε0 the vacuum permit-
tivity,m the electron mass, and γ is the Lorentz factor of the
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bunch. Furthermore, n is the number density of electrons,
Qb the bunch charge, σi for i ¼ ðx; yÞ is the rms transverse
beam size, and σs the rms longitudinal bunch length. Note
that for the cylinder length we use the double rms
longitudinal bunch length 2σs since σs is the standard
deviation from the mean and, therefore, it is a measure for
one half of the width of the distribution. This procedure is
employed for simplicity and a more detailed consideration
will be provided in Sec. IVA.
Electrons in a plasma oscillate with the plasma fre-

quency. While the plasma frequency describes a transverse
oscillation it nevertheless involves the Lorentz factor. The
reason is that the relativistic mass and the relativistic
electric and magnetic fields go into the corresponding
equation of motion. To get a feeling for the sizes of these
values at FLUTE the 3 nC and 1 pC bunches from above
will be considered, in particular. We are interested in the
behavior of the bunches right before the fourth chicane
magnet.1 Space charge effects are expected to be most
important in this magnet as here the bunch has already been
compressed by the largest fraction. The characteristic
values of these bunches, e.g., the bunch length are obtained
with the trajectory method. Hence, we assume that space
charge effects are negligible before the fourth magnet. The
results can be found in Table II and we then obtain

n ¼
�
6.2 × 10181=m3 for 3 nC;

4.3 × 10171=m3 for 1 pC;

ωp ¼
�
1.9 × 1081=s for 3 nC;

5.1 × 1071=s for 1 pC:
ð4:2Þ

Although these frequencies seem to be very high, they are
heavily suppressed by the Lorentz factor—contrary to a
nonrelativistic plasma with these particle densities.
A characteristic quantity for the behavior of space charge

forces in a particle beam is the Debye length λD being the
ratio of the rms transverse velocity ~vx and the plasma
frequency:

λD ¼ ~vx
ωp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0γ

2kBT
e2n

s
; ð4:3Þ

with Boltzmann’s constant kB. The Debye length emerges
as a length scale in the Poisson equation of a distribution of
charged particles. It is a measure of the influence that each
particle has on the other particles within a plasma. If the
Debye length lies in the order of the beam dimensions, the
smeared-out behavior of the particle distribution will be
more important than the interaction of single particles. For
a Debye length in the order of the distances between the

individual particles the interaction between nearest neigh-
bors will dominate [25]. This may contribute to the effect of
emerging grainy substructures in a bunch whereby micro-
bunching (see [26], amongst others) is the most prominent
of those effects.
Due to the motion of particles a beam can be considered

as a thermal distribution. Via γm ~v2x ¼ kBT we can then
assign a transverse temperature T to it. Whether we choose
~vx or ~vy as the transverse velocity does not matter if
ð~vx − ~vyÞ= ~vx ≪ 1. The latter is the case for the 3 nC and the
1 pC distribution that are considered. We then obtain

T ¼
�
2.3 × 108 K for 3 nC;

8.8 × 105 K for 1 pC;

λD ¼
�
3.4 × 10−2 m for 3 nC;

7.9 × 10−3 m for 1 pC;
ð4:4Þ

for the temperature T and the Debye length λD. The average
interparticle distance lp and the number Np of particles
inside a sphere with radius λD is given by

lp ¼
�
5.4 × 10−7 m for 3 nC;

1.3 × 10−6 m for 1 pC;

Np ¼
�
9.8 × 1014 for 3 nC;

9.0 × 1011 for 1 pC:
ð4:5Þ

We see that the Debye length is 1 order of magnitude
larger than the beam radius (compare to σx or σy in Table II)
directly before the fourth magnet. Besides, λD ≫ lp and
Np ≫ 1. Under these conditions the interaction of a single
particle with other particles due to space charge effects can
be described by considering a smooth particle distribution.

TABLE II. Physical parameters used for the 3 nC and the 1 pC
bunches, respectively, before the fourth chicane magnet (at
z ¼ 11.45 m). The momentum deviation Δp, the bunch length
L, and the beam sizes σx, σy are rms values. The transverse
velocities ~vx, ~vy are defined as the velocities corresponding to the
rms values of the transverse momentum components px and py,
respectively.

Parameter Unit Qb ¼ 3nC Qb ¼ 1pC

R m 1.006 1.135
B T 0.14 0.12
p MeV=c 41.2 41.2
σp 1.9 × 10−2 4.8 × 10−3

σx m 2.4 × 10−3 4.9 × 10−4

σy m 2.4 × 10−3 4.9 × 10−4

σpx 2.7 × 10−4 1.7 × 10−5

σpy 2.6 × 10−4 1.7 × 10−5

~vx=c 2.2 × 10−2 1.4 × 10−3

~vy=c 2.1 × 10−2 1.4 × 10−3

σs fs 286 32

1We obtain the corresponding distribution with the trajectory
method described in Sec. II. Thereby we assume that the change
of transverse coordinates is negligible.
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Furthermore when the space charge forces become small
compared to the external forces, the transverse beam
density profile is expected to be Gaussian with respect
to the radial distance r from the beam center, cf. Eq. (4.8) in
[25]. This can be checked to be the case for our bunches
when tracked with Astra. Nevertheless the most reasonable
possibility to start with is to describe a particle bunch
before the fourth magnet of the FLUTE bunch compressor
as a uniformly charged distribution within one sigma in all
three spatial dimensions. Besides, for simplicity the charge
density is assumed to have sharp edges.
As a measure for the net radial force on particles in a

uniform cylindric beam without any external fields the
dimensionless generalized perveance K can be introduced.
For K > 0 the beam particles are pushed outwards in the
radial direction, which leads to an increase of the beam
radius. For K < 0 the opposite happens and the beam size
becomes smaller. The latter can only occur when there are
particles inside the beam of opposite charge that neutralize
themselves. Especially for FLUTE the generalized per-
veance is given by

K ¼ ω2
pr2m

2β2c2
¼

�
1.2 × 10−6 for 3 nC;

3.5 × 10−9 for 1 pC:
ð4:6Þ

We see that for both types of bunchesK ≪ 1 indicating that
space charge forces are expected to be weak.
To summarize, all the previous simple estimates demon-

strate that space charge forces are of minor influence right
before the fourth chicane magnet. However one has to keep
in mind that this conclusion results from a rough and simple
estimate, where external electric and magnetic fields are
neglected. The estimate gives a first idea on the importance
of space charge forces within a typical bunch at FLUTE,
though. In what follows, the behavior of a particle bunch
inside the FLUTE chicane shall be examined in more detail.
To do sowemake the following assumptions: (1) The charge
distribution is continuous. Effects from individual electrons
or clusters of electrons are neglected. Therefore changes of
the electric and magnetic fields induced by fluctuations of
charge density are neglected as well. (2) A cylindrical shape
of the bunch is assumed (seeFig. 6), i.e., distortions from this
cylindrical shape such as a flat beam are neglected. (3) The
changes in bunch dimensions are defined by a single,
outermost (boundary) particle. (4) The charge distribution
is homogeneous inside the cylinder and falls off to zero
directly outside of the cylinder, i.e., it has sharp edges.
In general, particles moving inside the beam pipe are

subject to the Lorentz force that originates both from
internal and external electromagnetic fields. Internal fields
are those that are generated by the charged particles
themselves, whereas the external fields are generated by
the accelerator, e.g., cavities, dipole magnets, etc. The
relativistic equations of motion for an electron moving
along a trajectory rðtÞ are given by

d
dt
ðγðtÞm_rÞi ¼ _γm_ri þ γm̈ri ¼ qðEþ _r × BÞi; ð4:7Þ

with the Lorentz factor γ, the electric field vectorE, and the
magnetic field vector B. To set up the coordinate system
shown in Fig. 6 we need the Frenet trihedron ft̂; b̂; n̂g of a
general curve. This is made up of the tangent vector t̂, the
normal vector n̂, and the binormal vector b̂. These vectors
are unit vectors. For their derivatives with respect to time t
the Frenet equations hold:

_̂t ¼ j_rjκn̂; _̂n ¼ j_rjðτb̂ − κt̂Þ; _̂b ¼ −j_rjτn̂; ð4:8aÞ

where κ ¼ κðtÞ is the curvature and τ ¼ τðtÞ the torsion of
the curve:

κðtÞ ¼ j_̂tðtÞj
j_rðtÞj ¼

j_rðtÞ× r̈ðtÞj
j_rðtÞj3 ; τðtÞ ¼ ½_rðtÞ× r̈ðtÞ� · rðtÞ

j_rðtÞ× r̈ðtÞj2 :

ð4:8bÞ

We now consider the propagation of an electron bunch
inside a dipole magnet with constant magnetic field
pointing in the positive y-direction. We split the trajectories
of the bunch particles in the reference trajectory r0ðtÞ plus
the coordinates rbðtÞ of each particle with respect to the
reference particle:

rðtÞ ¼ r0ðtÞ þ rbðtÞ: ð4:9Þ

The reference particle is supposed to be situated in the
center of the bunch. The equations of motion can then be
written in the following form:

FIG. 6. Bunch traveling along a reference trajectory para-
metrized by rðtÞ. We assume the bunch to be of cylindric shape.
The coordinates of a bunch particle are described by a cylindric,
orthogonal coordinate system whose origin corresponds to the
position of the reference particle. The coordinate system is
spanned by the basis vectors êr, êϑ, and t̂. The first points in
the radial direction, the second in the circular direction, and the
third tangentially to the reference trajectory. The beam radius is
called rm.
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d
dt
ðγm_r0Þ þ

d
dt
ðγm_rbÞ ¼ q½Eþ ð_r0 þ _rbÞ ×B�: ð4:10Þ

Writing the electric and magnetic field as a sum of an
internal and an external contribution according to

E ¼ Eint þEext; ð4:11aÞ

B ¼ Bint þBext; ð4:11bÞ

we obtain

d
dt
ðγm_r0Þ − qðEext þ _r0 ×BextÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ d
dt
ðγm_rbÞ

¼ q½Eint þ _rb × ðBint þ BextÞ þ _r0 ×Bint�: ð4:12Þ

On the left-hand side of the latter equation the equations of
motion of the reference particle can be found, which is
assumed to be fulfilled by the trajectory r0. The last term on
the right-hand side vanishes, since at the points of the
trajectory where the tangent vectors _r0 are attached to, the
internal magnetic field vanishes (see below). In other
words, the internal magnetic field vanishes on the trajectory
of the reference particle.
We now intend to consider the behavior of the particles

that move with a velocity with respect to the reference
particle. To derive the equations of motion, the reference
trajectory is needed. In a dipole magnet with a constant
magnetic field strength vector pointing along the positive y-
axis it holds that

rðtÞ ¼ R

0
B@ cosðω0tÞ

0

sinðω0tÞ

1
CA; ω0 ¼

qB
γm

; ð4:13Þ

where ω0 is the cyclotron frequency and B is the magnetic
flux density. For this particular curve the Frenet trihedron is
given by

t̂ðtÞ ¼

0
B@− sinðω0tÞ

0

cosðω0tÞ

1
CA; n̂ðtÞ ¼ −

0
B@ cosðω0tÞ

0

sinðω0tÞ

1
CA;

b̂ðtÞ ¼

0
B@ 0

−1
0

1
CA; ð4:14Þ

and we obtain κðtÞ ¼ 1=R, τðtÞ ¼ 0, _κðtÞ ¼ 0, and _τðtÞ ¼ 0
for the curvature, torsion, and their derivatives. The
modulus of the velocity of a bunch particle with respect
to the reference particle is

vb ≡ j_rbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ r2 _ϑ2 þ _z2

p
: ð4:15Þ

The acceleration ab yields then

ab ≡ dj _rbj
dt

¼ dvb
dt

¼ 1

vb
½_r ̈rþr_r _ϑ2 þ r2 _ϑ ϑ̈þ_z ̈z�: ð4:16Þ

Please note that vb ≠ v where v is the velocity of the
reference particle, i.e., vb ≪ v. Using this information
the equations of motion for an electron moving inside
the magnetic field of a dipole magnet can be obtained
where the calculational details are relegated to Appendix B.
They read as follows:

_γm

�
_rþ vb

R
z cosϑ

�
þ γm

�̈
rþ

�
ab
R
zþ 2vb

R
_z

�
cosϑ

− r

�
_ϑ2 þ v2b

R2
cos2ϑ

��

¼ −e
�
Eint
r − vBint

ϑ þ
�
vb
R
r cosϑ − _z

�
ðBint

ϑ þ Bext
ϑ Þ

þ
�
r _ϑ −

vb
R
z sinϑ

�
Bint
t

�
; ð4:17aÞ

_γm

�
r _ϑ −

vb
R
z sinϑ

�
þ γm

�
r

�
ϑ̈þ v2b

2R2
sinð2ϑÞ

�
þ 2_r _ϑ

−
�
2vb
R

_zþ ab
R
z

�
sinϑ

�

¼ −e
�
Eint
ϑ þ vBint

r þ
�
_z −

vb
R
r cos ϑ

�
ðBint

r þ Bext
r Þ

−
�
_rþ vb

R
z cosϑ

�
Bint
t

�
; ð4:17bÞ

_γm

�
_z −

vb
R
r cosϑ

�
þ γm

�̈
z −

2vb
R

_r cos ϑ −
v2b
R2

z

þ r

�
2vb
R

_ϑ sinϑ −
ab
R
cosϑ

��

¼ −e
�
Eint
t þ

�
_rþ vb

R
z cosϑ

�
ðBint

ϑ þ Bext
ϑ Þ

−
�
r _ϑ −

vb
R
z sin ϑ

�
ðBint

r þ Bext
r Þ

�
: ð4:17cÞ

No approximations have been made so far, i.e., the latter
three equations are exact. Since there is no external electric
field accelerating the particles we use _γ ¼ 0 and _v ¼ 0.
According to [25] we introduce dimensionless functions

as follows:

rðtÞ¼ r0ϱðξÞ; ϑðtÞ¼φðξÞ; zðtÞ¼LζðξÞ; ð4:18aÞ
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l ¼ l0ξ; l0 ¼
r0ffiffiffiffiffiffiffi
2K

p ; K ¼ eI
2πε0mðcβγÞ3 : ð4:18bÞ

Here r0 is the initial radial particle distance to the cylinder
axis and L the initial cylinder length,2 which both are
characteristic length scales of the problem considered. We
express the traveled distance l of the bunch via r0 as well.

3

K is the dimensionless generalized perveance. Taking _l ¼ v
into account with the velocity v of the reference particle, the
derivatives of the functions can be expressed via dimen-
sionless derivatives and the length scales previously intro-
duced. Furthermore, we use the notation ~EðξÞ≡E½tðξÞ�,
~BðξÞ≡B½tðξÞ�, ~vðξÞ≡ v½tðξÞ�, and ~γðξÞ ¼ γ½tðξÞ� for the
corresponding functions in terms of the dimensionless
variable ξ. We then obtain

_r ¼ dr
dt

¼ _l
dr
dl

¼
_lr0
l0

dϱ
dξ

¼ v
ffiffiffiffiffiffiffi
2K

p
ϱ0ðξÞ;

̈r ¼ _v
ffiffiffiffiffiffiffi
2K

p
ϱ0ðξÞ þ 2K

v2

r0
ϱ00ðξÞ; ð4:19aÞ

_ϑ ¼ v
l0
φ0ðξÞ ¼ v

r0

ffiffiffiffiffiffiffi
2K

p
φ0ðξÞ;

ϑ̈ ¼ _v
r0

ffiffiffiffiffiffiffi
2K

p
φ0ðξÞ þ 2K

�
v
r0

�
2

φ00ðξÞ; ð4:19bÞ

_z ¼ vL
l0

ζ0ðξÞ ¼ v
ffiffiffiffiffiffiffi
2K

p L
r0
ζ0ðξÞ;

̈zðtÞ ¼ _vL
r0

ffiffiffiffiffiffiffi
2K

p
ζ0ðξÞ þ 2K

�
v
r0

�
2

Lζ00ðξÞ; ð4:19cÞ

_v ¼ _l
dv
dl

¼
ffiffiffiffiffiffiffi
2K

p ~v
r0

~v0ðξÞ;

_γ ¼ _l
d~γ
dl

¼
ffiffiffiffiffiffiffi
2K

p ~v
r0

~γ0ðξÞ: ð4:19dÞ

The dimensionless equations of motion containing the
general internal and external electric and magnetic fields
can be found in Eqs. (B5)–(B7).
We now employ the following assumptions for a first

simplification of the equations of motion. A cylindric
bunch with length L, homogeneous charge Q ¼ −Qb with
Qb > 0, and velocity v ≥ 0 can be associated with the
current I ¼ −Ib ¼ −Qbv=L (with Ib > 0). Such a bunch
current produces an electric field pointing in radial direc-
tion and a magnetic field pointing in circular direction.
They are given by (see, e.g., [25])

EintðrÞ ¼ −
Ib

2πε0v
r
r2m

êr;

BintðrÞ ¼ −
μ0Ib
2π

r
r2m

êϑ; r ≤ rm; ð4:20Þ

where ε0 is the vacuum permittivity, μ0 the vacuum
permeability, and rm the radius of the cylinder. The distance
from the symmetry axis of the bunch is given by r. The unit
vector pointing in the radial direction is êr and the unit
vector in the circular direction is êϑ. From Eq. (B4) we see
that the internal fields are mainly involved in the r-
component of the Lorentz force.
The form of the internal electric and magnetic fields of

Eq. (4.20) is valid on straight trajectories. Concerning the
kinematics on curved orbits, the situation is as follows. A
possible change of the internal fields in comparison to a
straight orbit arises due to the cylinder fringes, cf. Fig. 7.
When a bunch traverses a plane perpendicular to the orbit,
the current density is then not homogeneous any more. The
reason is that the cylinder front enters the plane under a
nonvanishing angle χ. Hence the current density grows
continuously to a constant value when the bunch enters the
plane and it decreases continuously to zero again upon
exiting the plane. To estimate the size of this effect,
consider a circle with radius R and constant curvature
κ ¼ 1=R. When the bunch touches the plane first, the angle
χ lies in the order of magnitude of L=ð2RÞ. We will see that
for a typical bunch considered this value is much smaller
than 1, which is why such effects can be safely neglected
(otherwise than within the approach considered in [27]).
Longitudinal curvature effects on the energy change of a

bunch caused by space charge forces are described, e.g., in

FIG. 7. Curvature effects for internal electromagnetic fields in a
cylindrical bunch. The curves on the right-hand side show the
current density and its first derivative as functions of the
longitudinal coordinate. Upon propagation through a fixed plane
the current density changes when the cylinder frames enter and
exit the plane, respectively. These changes happen within dis-
tances of the order of magnitude of ðL=RÞrm with the bunch
radius rm.

2With L we mean the full length of the cylinder.
3This choice is in accordance with [25]; in principle L could

also be used.
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Eq. (12) of [28]; note the term proportional to 1=γ2

resulting from Coulomb forces. The integrand involves
the derivative of the longitudinal bunch form factor λ ¼
λðsÞ with respect to time, which is nonzero for a nontrivial
form factor. However the longitudinal form factor that we
use is a mere superposition of Heaviside step functions.
Therefore the derivative will deliver nonzero contributions
from the cylinder fringes only, which are precisely the
suppressed effects covered in the previous paragraph.
With _r0 ¼ vt̂ Eq. (4.20) leads to the following Lorentz

force acting on an electron with charge q ¼ −e:

−eðEint − _r0 ×BintÞr ¼ −eðEint
r − vBint

ϑ Þ

¼ e

�
Ib

2πε0v
r
r2m

− v ·
μ0Ib
2π

r
r2m

�

¼ eIb
2πε0v

r
r2m

�
1 −

v2

c2

�

¼ eIb
2πε0v

r
r2m

1

γ2
: ð4:21Þ

Hence, the space charge forces that a particle in a homo-
geneous cylindric bunch feels along the radial direction are
suppressedby a factor1=γ2.As a next stepweassume that the
remaining internal field components are negligible, i.e.,

~Eint
ϑ ¼ ~Eint

t ¼ ~Bint
r ¼ ~Bint

t ¼ 0: ð4:22Þ

The velocity and acceleration of bunch particles in dimen-
sionless coordinates result from Eqs. (4.15) and (4.16) and
read as follows:

~vb ¼
ffiffiffiffiffiffiffi
2K

p
~vf½ϱ;φ; ζ�;

~ab ¼
2K ~v ~v0

r0
f½ϱ;φ; ζ� þ 2K ~v2

r0
g½ϱ;φ; ζ�; ð4:23aÞ

f½ϱ;φ; ζ�≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ02 þ ϱ2φ02 þ ðL=r0Þ2ζ02

q
; ð4:23bÞ

g½ϱ;φ; ζ�≡ ϱ0ϱ00 þ ϱϱ0φ02 þ ϱ2φ0φ00 þ ðL=r0Þ2ζ0ζ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ02 þ ϱ2φ02 þ ðL=r0Þ2ζ02

p :

ð4:23cÞ

Thenotationf ¼ f½•�,g ¼ g½•� shall indicate thatf,g contain
the functions given as arguments plus additional derivatives
of these functions.
We now express the equations of motion by solely using

dimensionless functions. All physical parameters then do
not appear in the functions or their derivatives any more but
in quantities that are denoted as Greek letters. Furthermore
these are numbered according to their order in the differ-
ential equations. The differential equation describing the
motion of bunch particles in the radial direction of the
cylinder in Fig. 6 is given by

η1ðϱ0 þ η2fζ cosφÞ þ ϱ00 þ η3ϱ
0

þ ½η4ðη3f þ gÞζ þ η5fζ0� cosφ − ϱðφ02 þ η6f2cos2φÞ
¼ η7½η8ϱþ ðη9fϱ cosφ − η10ζ

0Þðη11ϱ − ~Bext
φ Þ�; ð4:24aÞ

η1 ¼
~γ0

~γ
; η2 ¼

L
R
; η3 ¼

~v0

~v
;

η4 ¼ η2; η5 ¼ 2η2; ð4:24bÞ

η6¼
r20
R2

; η7¼
er20

2K ~v2 ~γm
; η8¼

Ib
2πε0 ~v~γ2r2m

; ð4:24cÞ

η9 ¼
ffiffiffiffiffiffiffi
2K

p
~v

R
; η10 ¼

ffiffiffiffiffiffiffi
2K

p
~vL

r20
; η11 ¼

μ0Ibr0
2πr2m

: ð4:24dÞ

Note that both η1 and η3 are exactly equal to zero when the
norm of the particle velocity is constant. Quantities con-
taining only bunch dimensions or velocities are merely
related to kinematics, whereas quantities containing the
elementary charge e have to do with space charge forces.
Furthermore, the occurrence of the bunch current Ib
indicates internal electric and magnetic fields that are
generated by the bunch itself. The parameter η8 shows
the cancellation of the internal radial electric field and the
internal circular magnetic field leaving a remainder propor-
tional to 1=γ2. This was already indicated in Eq. (4.21).
The differential equation describing the circular motion

of bunch particles is as follows:

χ1ðϱφ0 − χ2fζ sinφÞ þ ϱ½φ00 þ χ3φ
0 þ χ4f2 sinð2φÞ�

þ 2ϱ0φ0 − ½χ5ðχ3f þ gÞζ þ χ6fζ0� sinφ
¼ χ7ðχ9fϱ cosφ − χ10ζ

0Þ ~Bext
ϱ ; ð4:25aÞ

χ1 ¼
~γ0

~γ
; χ2 ¼

L
R
; χ3 ¼

~v0

~v
;

χ4 ¼
r20
2R2

; χ5 ¼ χ2; ð4:25bÞ

χ6 ¼ 2χ2; χ7 ¼
er20

2K ~v2 ~γm
;

χ9 ¼
ffiffiffiffiffiffiffi
2K

p
~v

R
; χ10 ¼

ffiffiffiffiffiffiffi
2K

p
~vL

r20
: ð4:25cÞ

Contrary to Eq. (4.24) this equation of motion involves the
radial external magnetic field component instead of the
circular one. Furthermore, the internal electric and mag-
netic fields do not play a role for the circular motion of the
particle.
Finally, the differential equation for the motion of the

bunch particles in the axial direction of the cylindric bunch
reads
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ψ1ðζ0 − ψ2fϱ cosφÞ þ ζ00 þ ψ3ζ
0 − ψ4f2ζ − ψ5fϱ0 cosφ

þ ϱ½ψ5fφ0 sinφ − ψ6ðψ3f þ gÞ cosφ�
¼ ψ7½ðψ9ρ

0 þ ψ10fζ cosφÞðψ11ρ − ~Bext
φ Þ

þ ðψ9ρφ
0 − ψ10fζ sinφÞ ~Bext

ϱ �; ð4:26aÞ

ψ1 ¼
~γ0

~γ
; ψ2 ¼

r20
RL

; ψ3 ¼
~v0

~v
;

ψ4 ¼
r20
R2

; ψ5 ¼ 2ψ2; ð4:26bÞ

ψ6 ¼ ψ2; ψ7 ¼
er20

2K ~v2 ~γm
; ψ9 ¼

ffiffiffiffiffiffiffi
2K

p
~v

L
;

ψ10 ¼
ffiffiffiffiffiffiffi
2K

p
~v

R
; ψ11 ¼

μ0Ibr0
2πr2m

: ð4:26cÞ

The quantities fη1;…;η6;η7×fη8;Bη9;Bη10;η9η11;η10η11gg,
fχ1;…; χ6; Bχ7 × fχ9; χ10gg, and fψ1;…;ψ6;ψ7 ×
fBψ9; Bψ10;ψ9ψ11;ψ10ψ11gg with the modulus of the
external magnetic flux density B are dimensionless. The
numbering of the coefficients has been performed such that
a correspondence between coefficients of different equa-
tions of motion is evident. The first six coefficients of each
differential equation are related to the kinematics; they only
involve kinematic quantities such as beam dimensions and
velocities. The product of the seventh and eighth coefficient
in Eq. (4.24) describes the space charge effects due to the
internal electric and magnetic field. The fact that no χ8
appears in Eq. (4.25) and no ψ8 in Eq. (4.26) demonstrates
that this special kind of force does not appear in the circular
and the longitudinal equation of motion.

A. Space charge effects in the FLUTE
bunch compressor

In the calculations of the previous section none of the
terms in the equations of motion were neglected a priori.
We will now estimate the order of magnitude of the related
quantities for the FLUTE chicane such that they can be
compared with each other. First of all, certain physical
values, e.g., the beam size or the beam current depend on
the bunch charge considered. We decided to compare the
two extreme beam dynamics cases that were simulated with
Astra: a bunch with the high charge of 3 nC and a bunch with
the very low charge of 1 pC.
Furthermore one has to keep in mind that the bunch

properties are not constant in the chicane. For example
during the process of bunch compression the peak current
will increase. That is why as a simple estimate of the
behavior of the bunch due to space charge forces we take
the initial values right before the fourth chicane magnet.
Another important point is that each bunch is a smeared-out
particle distribution. Hence, it has no sharp edges opposite
to the pictorial representation of the cylindric bunch in

Fig. 6. For this reason we take the corresponding rms
values, e.g., the rms beam size4 for the radius rm and Υ
times the rms bunch length σð4thÞs (before the fourth magnet)
for the cylinder length L.

rm ≡ ffiffiffiffiffiffiffiffiffi
σxσy

p
; L≡ϒσð4thÞs : ð4:27Þ

In this section the cylinder length is not simply taken as
the double of the rms bunch length, which was done
within the simple estimates at the beginning of the chapter.
Now the bunch currents will be plotted as functions of the
longitudinal electron distance with respect to the bunch
center (divided by c). It is reasonable to obtain the
parameter ϒ from these plots based on the procedure
stated in the following lines. As the bunch current for 3 nC
strongly decreases for Δs0=c≲ −430 fs [see Fig. 8(a)], the
cylindrical equivalent is chosen such that its length ranges
over allΔs0=cwhere the bunch current is larger than around
1 kA. Therefore we choose ϒ ≈ 3.0 for 3 nC. This value is
supposed to describe the cylindrical equivalent of the 3 nC
bunch much better than ϒ ¼ 2 that we chose for simplicity

FIG. 8. Bunch currents Ib of the 3 nC (a) and 1 pC bunch
(b) right before the fourth chicane magnet as a function of the
longitudinal electron distance Δs0=c with respect to the bunch
center. Here the coordinates have been corrected by a factor of
1= cosðαÞ where α is the bending angle of the dipole magnet. The
points are connected by interpolation to remove small-scale
oscillations caused by the binning. The two major peaks in
the longitudinal current distribution in (a) originate mainly from
the space charge influenced extraction from the cathode and
subsequent velocity deviations induced by rf fields in the gun.
The net result of those nonlinear mechanisms in the correspond-
ing 3 nC bunch can already be seen in Fig. 3(a) and becomes
more pronounced after compression, see Fig. 3(c). The cylinders
that will be taken as replacement bunches in the analytical
approach are marked by dashed lines [see the paragraph below
Eq. (4.27) for how to obtain these cylinders]. For (a) a binning of
50 fs is chosen resulting in Ipeak ¼ 3260 A and for (b) a binning
of 3 fs is used whereby Ipeak ¼ 15.4 A.

4According to the charge density n given in Eq. (4.1) it makes
sense to obtain the beam size as the geometric average of the
transverse beam sizes σx and σy.
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at the beginning of the chapter. Apart from one major
fluctuation the current profile is quite uniform between the
center and the front of the bunch and it drops to zero
quickly for Δs0=c≲ −430 fs. The front is characterized by
a high peak showing that a large number of electrons
gathers there. Since the width of this peak is rather narrow
compared to the overall bunch length and it cannot be dealt
with in our simple analytical model, it will not be taken into
account. The current profile of the 1 pC bunch in Fig. 8(b)
does not have a regime where a constant current could be
called a reasonable approximation. Instead it increases
steadily to its maximum value over the whole range of
longitudinal positions. Since a better option does not seem
to be at hand, we will stick to ϒ ¼ 2 for 1 pC.
The bending radius is chosen from the design values in

[6]. The current directly follows from the tracked bunch
data using an appropriate binning (see Fig. 8). Such a bunch
consists of Np ¼ 5 × 104 macroparticles. Counting the
number of macroparticles inside a bin, multiplying it with
Qb=Np (where Qb is the bunch charge) and dividing the
product by the bin size leads to the current in terms of
the longitudinal coordinate of the bunch. We then define the
peak current Ipeak of a bunch as

Ipeak ≡Qb

L
¼ Qb

ϒσð4thÞs

: ð4:28Þ

The Alfvén current IA is the maximum current possible for
a collimated, cylindrical beam of charged particles under
the influence of space charge effects. It can be written with
the characteristic current I0 as follows [29]:

IA ¼ I0βγ; I0 ¼
4πε0mc3

e
: ð4:29Þ

The characteristic current is the part of the Alfvén current
that is not related to the kinematics of the beam. The peak
current of the bunch normalized by I0 approximately
corresponds to the Budker parameter νB for relativistic
particles [25,29]. According to the peak current obtained in
Fig. 8 the Budker parameter is given by

νB ≡ Ipeak
I0β

≈
Ipeak
I0

¼
�
1.9 × 10−1 for 3 nC;

9.1 × 10−4 for 1 pC:
ð4:30Þ

We see that for the 1 pC bunch at FLUTE the peak current
is much smaller than the characteristic current and even
more than the Alvén current (because of the Lorentz
factor). So we are far away from the regime where the
beam may become unstable due to space charge forces.
This is what happens only for currents that lie in the vicinity
of IA. However, for the 3 nC bunch the peak current is,
indeed, smaller than I0 but not negligibly small. This may
have some influence on the treatment of space charge
effects and we will come back to this issue at the end of the
current chapter. Note that also a geometrical factor due to
the beam shape may shift the effective Budker parameter,
which will not be considered further, though. Using the
definition of νB in Eq. (4.30), the generalized perveance K
can also be computed as follows:

K ¼ Ipeak
I0

2

β3γ3
¼ 2νB

β2γ3
; ð4:31Þ

giving a value for 1 pC that is in accordance with Eq. (4.6).
For 3 nC the value of K has to be adapted due to the recent
choice Υ ≈ 3.0.
In Table III all dimensionless quantities appearing in the

equations of motion are obtained for both the particular
3 nC and the 1 pC bunch considered. Quantities purely
related to curvature effects due to the trajectory are much
smaller than 1, since they involve either ratios r0=R or L=R
where the curvature radius R is much larger than the bunch
dimensions r0 and L. This is a proof of principle that the
approximation of a cylinder with its center traveling along
the trajectory and its axis being tangential to the curve is
warranted. Therefore it is also possible to work with
Eq. (4.20) to model the internal electric and magnetic
fields of the bunch. Bear in mind that the terms in the
equations of motion (4.24)–(4.26) that do not appear
together with a dimensionless physical quantity such as
η2 are multiplied with 1. In this context the term including
the prefactor η7η8 ¼ 1=2 is characteristic, too. We now

TABLE III. Dimensionless physical parameters as they appear in the equations of motion (4.24)–(4.26). Each pair of columns gives
the parameters needed plus their values for FLUTE using Table II and Fig. 8.

Qb η2 η4 η5 η6 η7 ~η8 η7η9B η7η9 ~η11 η7η10B η7η10 ~η11

3 nC 2.56 × 10−4 2.56 × 10−4 5.13 × 10−4 5.75 × 10−6 0.5 4.61 × 10−3 9.74 × 10−3 0.205 0.434
1 pC 1.69 × 10−5 1.69 × 10−5 3.37 × 10−5 1.86 × 10−7 0.5 2.21 × 10−3 1.17 × 10−4 0.201 1.06 × 10−2

Qb χ2 χ4 χ5 χ6 χ7χ9B χ7χ10B
3 nC 2.56 × 10−4 2.88 × 10−6 2.56 × 10−4 5.13 × 10−4 4.61 × 10−3 0.205
1 pC 1.69 × 10−5 9.29 × 10−8 1.69 × 10−5 3.37 × 10−5 2.21 × 10−3 0.201

Qb ψ2 ψ4 ψ5 ψ6 ψ7ψ9B ψ7ψ9 ~ψ11 ψ7ψ10B ψ7ψ10 ~ψ11

3 nC 2.24 × 10−2 5.75 × 10−6 4.49 × 10−2 2.24 × 10−2 18.0 38.0 4.61 × 10−3 9.74 × 10−3

1 pC 1.10 × 10−2 1.86 × 10−7 2.20 × 10−2 1.10 × 10−2 131 6.96 2.21 × 10−3 1.17 × 10−4
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simplify the equations of motion such that all terms
multiplied by a number much smaller than 1 according
to Table III are neglected. This leads to a set of simplified
differential equations given as follows:

ϱ00 ¼ η7½η8ϱ − η10ζ
0ðη11ϱ − ~Bext

φ Þ�; ð4:32aÞ

ϱφ00 þ 2ϱ0φ0 ¼ −χ7χ10ζ0 ~Bext
ϱ ; ð4:32bÞ

ζ00 ¼ ψ7ψ9½ϱ0ðψ11ϱ − ~Bext
φ Þ þ ϱφ0 ~Bext

ϱ �: ð4:32cÞ

Setting ~Bext
ϱ ¼ ~Bext

φ ¼ 0, the resulting set of equations holds
for the drift spaces of the FLUTE chicane. In this case the
first of these simplified equations of motion partially
decouples from the other two, i.e., the angular variable
φ does not appear any more. This shows that for mere drifts
the circular motion of particles inside the bunch due to the
magnetic fields can be neglected when considering the
increase of the transverse beam dimensions.
The (constant) external magnetic flux density in the

dipole magnet along the positive y-direction can be
decomposed in a radial and a circular component:

~Bext ¼ B½ðêy · êϱÞêϱ þ ðêy · êφÞêφ þ ðêy · t̂Þt̂�
¼ −B½êϱ sinφþ êφ cosφ�: ð4:33Þ

The next important issue to mention is that the internal
electric and magnetic field components themselves given
by Eq. (4.20) depend on the cylinder radius rm. Since we
are interested in the evolution of rm as a function of time we
cannot take it as a constant. Under the assumption that
the particle trajectories are laminar, i.e., they do not
intersect each other, it suffices to consider the envelope
particles. Because of this we set rm ¼ r0ϱðξÞ with r0 ¼ffiffiffiffiffiffiffiffiffi
σxσy

p being the initial radial distance of an envelope
particle to the cylinder axis. This procedure is followed in
[25] as well and leads to the final system of differential
equations:

ϱ00 ¼ η7

�
~η8
ϱ
− η10ζ

0
�
~η11
ϱ

þ B cosφ

��
; ð4:34aÞ

ϱφ00 þ 2ϱ0φ0 ¼ χ7χ10ζ
0B sinφ; ð4:34bÞ

ζ00 ¼ ψ7ψ9

�
ϱ0
�
~ψ11

ϱ
þ B cosφ

�
− ϱφ0B sinφ

�
; ð4:34cÞ

with the following definitions where the cylinder radius rm
corresponds to the initial radial particle distance r0:

~η8 ¼ η8jrm¼r0 ; ~η11 ¼ η11jrm¼r0 ;

~ψ11 ¼ ψ11jrm¼r0 : ð4:34dÞ

If in Eq. (4.34a) we set the external magnetic field B equal
to zero and neglect particle motions along the z-direction of
the coordinate system (resulting in ζ0 ¼ 0) we obtain

ϱ00 ¼ η7 ~η8
ϱ

: ð4:35Þ

This differential equation is discussed at the beginning of
the fourth chapter in [25]. The numerical solutions for
different initial conditions are presented in Fig. 9. They
correspond to the plots given in the latter reference, which
is a good cross-check for the method used here. In the
figure we see that space charge effects always blow up the
radial beam dimension. If the beam is focused, e.g., by
magnetic quadrupoles the beam size first decreases until a
certain minimum value and then it starts increasing again.
The model considered here is more general in the

sense that it does not neglect certain effects at the start
of the calculations. The differential equations given by
(4.34a)–(4.34c) describe the motion of particles in radial,
angular, and z-direction with respect to the reference
particle. Furthermore external magnetic fields can be taken
into account. The equations for a drift space follow by
setting B ¼ 0. Using the values of Table III, the system of
differential equations can be solved numerically. This is
done for both the 3 nC and the 1 pC bunch right before the
fourth magnet of the FLUTE bunch compressor.
We intend to solve the system of differential equations

for the following initial conditions:

rðt ¼ 0Þ ¼ r0; _rðt ¼ 0Þ ¼ 0;

ϑðt ¼ 0Þ ¼ ϑ0; _ϑðt ¼ 0Þ ¼ 0; ð4:36aÞ

zðt ¼ 0Þ ¼ L; _zðt ¼ 0Þ ¼ Δv: ð4:36bÞ

The first two conditions mean that the initial beam size is r0
and the change of the beam size vanishes, which makes

FIG. 9. Behavior of the dimensionless function ϱðξÞ defined by
Eq. (4.18) (amongst others). The different curves follow by
solving Eq. (4.34a) for ζ0 ¼ 0 and B ¼ 0 numerically for
different initial slopes. The curves are numbered according to
the initial conditions: ϱ0ðξ ¼ 0Þ ¼ ð0;−0.5;−0.75;−1.0;−1.5;
−2.0Þ.
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sense in the case that no focusing or defocusing is taken
into account. The subsequent two conditions state that an
arbitrary initial angle φ0 is chosen that initially does not
change as well. By the fifth condition a head particle is
considered and the sixth condition takes the velocity
difference Δv of this particle with respect to the reference
particle into account. Now these initial conditions have to
be translated to the dimensionless variables.
The first five can be translated directly by using

Eq. (4.18). The last one is a bit more involved. Here we
first need the velocity difference Δv of the head particle
with respect to the reference particle for a bunch traveling
through the last bending magnet. In the following, this

difference is assumed to be constant. Let σð4thÞs be the bunch

length directly before the fourth chicane magnet, σðfinÞs the
final bunch length, and v the (constant) velocity of
the reference particle. It then makes sense to state that
both the head and the tail particle will travel half of the

distance σðfinÞs − σð4thÞs during compression. Such a
distance will be traveled in the time period Δt ¼
R arcsinðLmag=RÞ=v. Then the velocity difference of the
head particle with respect to the reference particle can be
obtained as follows:

Δv ¼ σðfinÞs − σð4thÞs

2Δt
¼ ðσðfinÞs − σð4thÞs Þv

2R arcsinðLmag=RÞ
< 0: ð4:37Þ

Now Δv has to be expressed via the prefactor in _zðtÞ of
Eq. (4.19c). This then leads to a dimensionless quantity.
Finally we end up with the following dimensionless initial
conditions:

ϱðξ ¼ 0Þ ¼ 1; ϱ0ðξ ¼ 0Þ ¼ 0;

φðξ ¼ 0Þ ¼ φ0; φ0ðξ ¼ 0Þ ¼ 0; ð4:38aÞ

ζðξ ¼ 0Þ ¼ 1;

ζ0ðξ ¼ 0Þ ¼ Δv
�
v

ffiffiffiffiffiffiffi
2K

p σð4thÞs

r0

�−1

: ð4:38bÞ

Via Eq. (4.18) the dimensionless variable ξ is related to the
dimensionful traveled length l. The maximum traveling
length lm of the reference particle inside the fourth bending
magnet connects to the following ξm:

ξm ≡ ffiffiffiffiffiffiffi
2K

p lm
r0

¼
ffiffiffiffiffiffiffi
2K

p R arcsinðLmag=RÞ
r0

: ð4:39Þ

The bunch lengths for both bunch charges right before the
fourth bending magnet are obtained using the particle
trajectory described in Sec. II A. They are corrected by a
factor 1= cos α with the bending angle α since the bunch
length obtained with this procedure is understood to be

projected on the longitudinal axis. Finally, for the 3 nC
bunch we get with the choice φ0 ¼ 1:

ϱðξmÞj3 nC ¼ 1.00956; φðξmÞj3 nC ¼ 0.997846;

ζðξmÞj3 nC ¼ 0.767139: ð4:40Þ

The corresponding values for the 1 pC bunch are given by

ϱðξmÞj1 pC ¼ 1.00091; φðξmÞj1 pC ¼ 0.999135;

ζðξmÞj1 pC ¼ 0.704109: ð4:41Þ

The dependence of these values on the initial angle was
tested as well. For the 1 pC bunch the results vary in the per
mill regime, whereas for 3 nC the maximum variations are
2%. Note that the problem is not completely cylindrically
symmetric.
How the space charge forces influence bunch compres-

sion can be deduced from ζðξmÞ. Twice this value corre-
sponds to the amount of bunch compression if it is assumed
that the head particle travels the same distance as the tail
particle. So we have

σsj 3 nC
with space charge

¼ ½2ζðξmÞj3nC − 1�σð4thÞs j3 nC
¼ 1.069σsj3 nC; ð4:42Þ

for the 3 nC bunch and

σsj 1 pC
with space charge

¼ ½2ζðξmÞj1pC − 1�σð4thÞs j1 pC
¼ 1.009σsj1 pC; ð4:43Þ

for the 1 pC bunch. Now we compare these results to the
output of the Astra space charge routine that is shown in
Fig. 10(a) for the 3 nC bunch and in Fig. 10(b) for the 1 pC
bunch. In comparison to the Astra results without space
charges the bunch length increases by approximately 5.2%
for 3 nC and 7.5‰ for 1 pC. Hence the simulation results
correspond quite well to the predicted results by the
analytical method, which are 6.9% for 3 nC and 9.5‰
for 1 pC.
The increase of bunch length caused by space charge

forces lies in the regime of few percent for 3 nC, which is a
factor of around 7 larger than the few per mille for 1 pC.
The explanation for this is that the product ψ7ψ9 ~ψ11 in
Table III has a value of 38.0 for 3 nC differing from the
corresponding value for 1 pC by a factor of approximately
5.5. Note that the latter product describes the size of the
force in the circular magnetic field experienced by an
electron moving outwards. This force works against bunch
compression. The bunch length of the 1 pC bunch is,
indeed, smaller by a factor of 9 versus the 3 nC bunch.
However note that the bunch charges differ by a factor of
3000 enlarging the space charge forces for the 3 nC bunch.
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Finally the space charge simulations for FLUTE per-
formed with Astra shall be directly compared to the
analytical approach. Realistic bunches at FLUTE have a
complicated structure both in position and momentum
space (cf. Figs. 3 and 8). Therefore to test our method
directly, ideal cylindrical bunches with charges of 3 nC and
1 pC are initialized in Astra (see Fig. 11 for 3 nC). As
explained in the beginning of the current section, the
cylinders are characterized by uniform electron density,
sharp edges, and also zero transverse temperatures. Their
initial positions are chosen to be 6 cm before the fourth
chicane magnet where they have radii rm and initial lengths
LðiÞ given in Table IV, cf. also Eq. (4.27). Furthermore their
correlated energy spreads are set to zero for simplification.
Runs without space charge effects lead to final cylinder
lengths LðfÞ. With space charge effects the final cylinder
lengths are given by ~LðfÞ and the explicit values for LðfÞ and
~LðfÞ can be found in Table IV. Those are obtained 6 cm
behind the fourth dipole magnet. Switching space charge
effects on, results in an increase of the final cylinder length
by around 2.80% for 3 nC and 5.4‰ for 1 pC.
Now an analogue computation is carried out using the

analytical space charge model. The initial conditions for the
set of differential equations are chosen such as in Eq. (4.38)

with the difference that ζ0ðξ ¼ 0Þ ¼ 0, since the correlated
energy spread of the cylinders is supposed to vanish.
Solving the differential equations numerically leads to
ζðξmÞj3nC ¼ 1.00448 and ζðξmÞj1pC ¼ 1.00026 behind
the fourth chicane magnet. Therefore there is an increase
of the cylinder length by around 0.9% for 3 nC and by
0.5‰ for 1 pC accounted for by space charge effects.
Hence the results for the 3 nC and 1 pC bunches obtained

from the simple analytical model deviate by factors of
approximately 3.1 and 10.8, respectively, from the simu-
lation results. However it must be respected that it is
inherently difficult to model space charge forces in an
electron bunch with a complex structure. In the analytical
approach the behavior of a single electron is taken as a
measure for how the transverse and longitudinal bunch
dimensions change where the surrounding charge distri-
bution is assumed to be continuous. This means that effects
from individual electrons or clusters of electrons are
neglected as well as collective effects. Thus a change of
the physical fields originating from fluctuations of charge
density is not taken into account. The present study tells us
that the model gives a reasonable description of the uniform
3 nC cylinder, but the space charge forces of the 1 pC
cylinder are widely underestimated. The cause is most
probably a systematic error that is the same for both
cylinders, but has much larger implications in the case
of a small bunch length such as for the 1 pC bunch (cf. also
the discussion at the end of Sec. II A). However the major
goal of the analytical model is to understand which
particular effects are dominant in increasing the bunch
size and which can be neglected. This becomes clear from
inspecting the values stated in Table V.
The first term on the right-hand side of Eq. (4.34a)

(∼η7 ~η8) involves the generalized perveance K, which
shows that this contribution is directly linked to space
charge forces. It describes that particles are pushed out-
wards in the radial direction due to space charge effects.
The second term (∼η7η10 ~η11) originates from the internal

TABLE IV. Transverse and longitudinal dimensions used for
the ideal, cylindrical 3 nC and 1 pC bunches. The initial lengths
LðiÞ are taken 6 cm before the fourth chicane magnet
(z ¼ 11.39 m) and the final lengths LðfÞ, ~LðfÞ are obtained
6 cm behind the fourth dipole (z ¼ 11.71 m).

Parameter Unit Qb ¼ 3 nC Qb ¼ 1 pC

rm mm 2.4 0.49
LðiÞ fs 859.5 64.0

LðfÞ fs 879.8 71.1
~LðfÞ fs 903.9 71.4

FIG. 10. Longitudinal phase space plots of tracked 3 nC and 1 pC bunches after the chicane. The profiles shown were computed with
the Astra space charge routine based on 5000 macroparticles. The bunch parameters are Qb ¼ 3 nC, σs ¼ 224 fs (a) and Qb ¼ 1 pC,
σs ¼ 11.5 fs (b).
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magnetic field and it demonstrates that particles driven
inwards along the longitudinal direction blow up the bunch
radially. Because of the third term (∼η7η10B) the external
magnetic field may force particles inwards longitudinally
leading to an additional increase of the radial bunch size.
The first term on the right-hand side of Eq. (4.34b)
(∼χ7χ10B) indicates that a longitudinal motion of a particle
can influence its circular motion. Last but not least, the first
two terms on the right-hand side of Eq. (4.34c) (∼ψ7ψ9 ~ψ11,
ψ7ψ9B) involve the generalized perveance and the internal
magnetic field, respectively. These contributions again link
changes of the radial bunch dimension with changes of the
bunch length. The third term (∼ψ7ψ9B) reveals that even a
circular motion in combination with the external magnetic
field may have some influence on the bunch length.
The term governed by η7η10 ~η11 in Eq. (4.34a) connects

ϱ00 and ζ0. It describes the Lorentz force acting on an
electron when the bunch is being compressed. So a
decrease of the longitudinal coordinate is related to an
increase in the radial coordinate, which explains the relative
minus sign in the differential equation. The term connecting
ζ00 with ϱ0 in Eq. (4.34c) is governed by ψ7ψ9 ~ψ11 and it
models the Lorentz force on an electron when it is pushed
radially outwards. This force leads to an increase in the
longitudinal coordinate, which is why the relative sign
between the two terms is positive. The ratio of the two
forces stated can be calculated to give

ζ00

ϱ00
¼ −Ξ

�
ϱ0

ζ0

�
; Ξ ¼ ψ7ψ9 ~ψ11

η7η10 ~η11
¼

�
r0
L

�
2

: ð4:44Þ

Hence the forces themselves are equal in magnitude as
expected, since Eq. (4.44) does not involve characteristic
quantities associated to the force such as the electron charge
or the magnetic flux density. The ratio is solely made up of
the radial and longitudinal bunch dimensions r0 and L,
respectively. Note that for the 3 nC bunch r0 lies in the
order of magnitude of few millimeters, whereas L is a
fraction of one millimeter, which explains the quite large
difference of the related coefficients in the differential
equation. To understand this, assume that an electron
propagates outwards in the radial direction along a path
length corresponding to a small fraction of the radial bunch
dimension. Now if this electron experiences a Lorentz force
the resulting deflection along the longitudinal direction will
have a much larger impact on the bunch length than the
radial motion has on the radial bunch dimension.
To summarize, the results obtained from the analytical

approach are in reasonable agreement with the simulations.
The predictions for an increase in bunch length for the
realistic bunches at FLUTE lie in the right ballpark for both
bunches [cf. the paragraph under Eq. (4.43)]. For uniform
cylinders of equivalent charges (without a correlated energy
spread) the amount of space charge forces is underesti-
mated in the analytical method. This underestimation is
compensated when the cylinders are subject to bunch
compression caused by a chirp, which leads to the much
better agreement for the realistic 3 nC and 1 pC bunches.
Nevertheless the analytical approach serves well in giving a
rough estimate on space charge forces in a short amount of
time (few seconds for solving the Lorentz force equations
numerically with Mathematica versus an Astra simulation run
including space charge effects taking several hours).
Furthermore looking at the equations of motion, the

TABLE V. Dimensionless physical parameters that appear in
the equations of motion (4.24)–(4.26) for the idealized, cylin-
drical bunches.

Qb η7 ~η8 η7η10 ~η11 η7η10B χ7χ10B ψ7ψ9 ~ψ11 ψ7ψ9B

3 nC 0.500 0.436 0.205 0.205 37.8 17.8
1 pC 0.500 1.06 × 10−2 0.202 0.202 6.94 132

0

FIG. 11. Transverse (a) and longitudinal (b) part of the uniform cylindrical test bunch distribution 6 cm before the fourth dipole for a
bunch charge of 3 nC. The macroparticles are shown as (blue) dots. The dimensions of the cylinder are chosen according to Eq. (4.27)
with the parameters taken from Table II.
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physical effects responsible for an increase of the beam size
and the bunch length can be identified directly. In addition,
a more sophisticated version of our formalism has potential
for implementation in tracking codes for substantial reduc-
tion of computing power by elongation of step sizes.

V. CONCLUSIONS AND OUTLOOK

To summarize, analytical studies for bunch compression
at the future linear accelerator FLUTE were performed
whose results were compared to the simulation output of
the tool Astra. The calculations were done for two typical
bunches with the extremal charges of 1 pC and 3 nC that
had been simulated from the cathode to the entrance of the
bunch compressor. Neglecting both space charge and CSR
effects, the final bunch profiles obtained from mere path
length differences agree very well with the simulation
results. As a cross-check, the problem was then treated
within the transfer matrix formalism as well. First-order
perturbation theory in the momentum deviation gives a
result for the final bunch length that deviates from the
simulation results by several percent. For this reason and
because of dispersive effects considering second-order
terms was mandatory to give a good agreement. Besides,
in this context we obtained some new first- and second-
order transfer coefficients for dipole magnets, fringe fields,
and drifts.
To consider space charge effects, a simple model was

introduced where the bunch is described by a homo-
geneously charged cylinder. The latter generates both
electric and magnetic fields when moving. The equations
of motion for a single electron at the surface of the cylinder
were obtained and solved numerically. For realistic bunches
at FLUTE this model gives a reasonable agreement of the
increase in bunch length with the simulations. It can be
deduced that space charge effects are negligible for bunch
compression at FLUTE. Our approach is simple enough to
allow “back-on-the-envelope” estimations on both trans-
verse and longitudinal space charge forces for an electron
bunch on a curved trajectory without the need of time-
consuming simulations.
The paper demonstrates how powerful the combination

of analytical methods and simulations is to investigate
bunch compression. The techniques presented shall
provide a framework for further analytical compression
studies. These can be used for future investigations of
FLUTE or they may be modified accordingly for other
purposes.
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APPENDIX A: PARAMETRIC REPRESENTATION
OF PARTICLE TRAJECTORY IN THE

FLUTE CHICANE

In what follows, find the electron trajectory for the
FLUTE chicane used in Sec. II A (for initial angle x0 ¼ 0),
cf. Fig. 12. The right-hand interval limits of r1;…; r9 are
understood to correspond to l1;…; l9:

rðlÞ ¼

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

r1ðlÞ for 0 ≤ l ≤ l1;

r2ðl − l1Þ for l1 ≤ l ≤
P

2
i¼1 li;

r3ðl −
P

2
i¼1 liÞ for

P
2
i¼1 li ≤ l ≤

P
3
i¼1 li;

r4ðl −
P

3
i¼1 liÞ for

P
3
i¼1 li ≤ l ≤

P
4
i¼1 li;

r5ðl −
P

4
i¼1 liÞ for

P
4
i¼1 li ≤ l ≤

P
5
i¼1 li;

r6ðl −
P

5
i¼1 liÞ for

P
5
i¼1 li ≤ l ≤

P
6
i¼1 li;

r7ðl −
P

6
i¼1 liÞ for

P
6
i¼1 li ≤ l ≤

P
7
i¼1 li;

r8ðl −
P

7
i¼1 liÞ for

P
7
i¼1 li ≤ l ≤

P
8
i¼1 li;

r9ðl −
P

8
i¼1 liÞ for

P
8
i¼1 li ≤ l ≤

P
9
i¼1 li;

ðA1aÞ

r1ðlÞ¼
�
x0
z0

�
þ
�
sinx0

cosx0

�
l; l∈

�
0;
z1− z0
cosx0

�
; ðA1bÞ

r2ðlÞ ¼ r1

�
z1 − z0
cos x0

�
þ R

�
cos x0 − cosðl=Rþ x0Þ
sinðl=Rþ x0Þ − sin x0

�
;

l ∈ ½0; Rα�; ðA1cÞ

r3ðlÞ ¼ r2ðRαÞ þ
�
cos δ

sin δ

�
l; l ∈

�
0;
Lspace

sin δ

�
; ðA1dÞ

r4ðlÞ ¼ r3

�
Lspace

sin δ

�
þ R

�
sinðl=Rþ δÞ − sin δ

cos δ − cosðl=Rþ δÞ

�
;

l ∈ ½0; Rα�; ðA1eÞ

r5ðlÞ ¼ r4ðRαÞ þ
�
sin x0

cos x0

�
l; l ∈

�
0;

Ldrift

cos x0

�
; ðA1fÞ
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r6ðlÞ ¼ r5

�
Ldrift

cos x0

�
þ R

�
cosðl=R − x0Þ − cos x0

sinðl=R − x0Þ þ sin x0

�
;

l ∈ ½0; Rðx0 þ ϵÞ�; ðA1gÞ

r7ðlÞ ¼ r6ðR½x0 þ ϵ�Þ þ
�− sin ϵ

cos ϵ

�
l; l ∈

�
0;
Lspace

cos ϵ

�
;

ðA1hÞ

r8ðlÞ ¼ r7

�
Lspace

cos ϵ

�
þ R

�
cos ϵ − cosðϵ − l=RÞ
sin ϵ − sinðϵ − l=RÞ

�
;

l ∈ ½0; Rðx0 þ ϵÞ�; ðA1iÞ

r9ðlÞ ¼ r8ðR½x0 þ ϵ�Þ þ
�
sin x0

cos x0

�
l; l ∈ ½0; z2�: ðA1jÞ

α ¼ arcsin

�
Lmag

R
þ sin x0

�
− x0;

δ ¼ π

2
− ðαþ x0Þ; ðA1kÞ

ϵ ¼ arcsin

�
Lmag

R
− sin x0

�
: ðA1lÞ

1. Parametric representation of trajectory
in hypothetical sector magnet chicane

A parametric representation of the trajectory for a
particle in a chicane consisting of sector dipole magnets
(see Sec. II B and Fig. 13) is given by Eq. (A1a) with the
following piecewise functions:

r1ðlÞ ¼
�

x0
z0 þ l

�
; l ∈ ½0; z1 − z0�; ðA2aÞ

r2ðlÞ ¼ r1ðz1 − z0Þ þ
�
R

0

�
þ R0

�− cosðl=R0Þ
sinðl=R0Þ

�
;

l ∈ ½0; R0ε�; ðA2bÞ

r3ðlÞ ¼ r2ðR0εÞ þ
�
sin ε

cos ε

�
l; l ∈ ½0; L0

space�; ðA2cÞ

r4ðlÞ ¼ r3ðL0
spaceÞ þ R00

�
cosðl=R00 − εÞ − cos ε

sinðl=R00 − εÞ þ sin ε

�
;

l ∈ ½0; R00ε�; ðA2dÞ

r5ðlÞ ¼ r4ðR00εÞ þ
�
0

l

�
; l ∈ ½0; Ldrift�; ðA2eÞ

r6ðlÞ ¼ r5ðLdriftÞ þ R00
�
cosðl=R00Þ − 1

sinðl=R00Þ

�
;

l ∈ ½0; R00ε�; ðA2fÞ

r7ðlÞ ¼ r6ðR00εÞ þ
�− sin ε

cos ε

�
l;

l ∈ ½0; L0
space�; ðA2gÞ

r8ðlÞ ¼ r7ðL0
spaceÞ þ R0

�
cos ε − cosðl=R0 − εÞ
sin εþ sinðl=R0 − εÞ

�
;

l ∈ ½0; R0ε�; ðA2hÞ

r9ðlÞ ¼ r8ðR0εÞ þ
�
0

l

�
; l ∈ ½0; z2 − z1�; ðA2iÞ

R0 ¼ Rþ ΔR; ðA2jÞ

FIG. 13. Draft of a bunch compressor consisting of sector
dipole magnets. The reference trajectory is shown as a plain, blue
line. The bending angle is given by α and the bending radius is
denoted as R. The distance between the exit face of the first/third
dipole magnet and the entrance face of the second/fourth dipole
magnet that is projected on the longitudinal axis is called Lspace.
The distance between the second and the third magnet is Ldrift.

FIG. 12. Here the FLUTE chicane is considered with a particle
trajectory traveled by an electron that has both an initial trans-
verse momentum and a longitudinal momentum component.
Hence the angle x0 between the initial straight trajectory and
the horizontal axis is nonzero. The resulting modified trajectory is
shown as a plain, blue curve. The trajectory for x0 ¼ 0 is shown as
a plain, red curve and it is presented for comparison. The electron
after the chicane does not come back to the z-axis for initial
x0 ≠ 0.
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ε ¼ arctan

�
R sin αþ sin α½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 − ΔR2sin2α

p
− ðRþ ΔR cos αÞ�

ΔRþ R cos αþ cos α½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 − ΔR2sin2α

p
− ðRþ ΔR cos αÞ�

	
; ðA2kÞ

L0
space ¼

2Lspace − ΔR sinð2αÞ − 2R0 sin ε
2 cos α cosðα − εÞ þ R0 tan α; ðA2lÞ

R00 ¼ 1

cosðα − εÞ fR½sinð2αÞ þ cot ε� tanðαÞ − R cot εsin2α tan α

þ sin α½Lspace − R0= sin εþ cot εðR0 − Rþ R cos α − Lspace tan αÞ�g: ðA2mÞ

Here α is the bending angle andΔR ¼ Δp=ðeBÞwith the
momentum deviation Δp, the magnetic field B, and the
elementary charge e. For the reference trajectory ΔR ¼ 0
has to be set.

APPENDIX B: SPACE CHARGE EFFECTS
FOR A CYLINDRIC BUNCH

To derive the equations of motion for electrons within a
cylindric bunch in Sec. IV the following formulas are
needed. The basis vectors b̂ and n̂ can be expressed by
the new basis vectors êr and êϑ (and vice versa) as
follows:

êr ¼ n̂ cos ϑþ b̂ sinϑ;

êϑ ¼ −n̂ sin ϑþ b̂ cos ϑ; ðB1aÞ

b̂ ¼ êr sin ϑþ êϑ cos ϑ;

n̂ ¼ êr cos ϑ − êϑ sinϑ: ðB1bÞ

The derivatives of the basis vectors fêr; êϑ; t̂g with respect
to t are given by

_̂er ¼ −n̂ _ϑ sin ϑþ cosϑj_rjðb̂τ − t̂κÞ þ b̂ _ϑ cos ϑ

þ sin ϑð−n̂j_rjτÞ
¼ −t̂j_rjκ cosϑþ _ϑð−n̂ sinϑþ b̂ cos ϑÞ
þ j_rjτðb̂ cosϑ − n̂ sin ϑÞ

¼ −t̂j_rjκ cosϑþ ð _ϑþ j_rjτÞêϑ; ðB2aÞ

_̂eϑ ¼ −n̂ _ϑ cos ϑ − sin ϑj_rjðb̂τ − t̂κÞ − b̂ _ϑ sinϑþ _̂b cos ϑ

¼ t̂j_rjκ sin ϑ − _ϑðn̂ cosϑþ b̂ sinϑÞ
− j_rjτðn̂ cosϑþ b̂ sin ϑÞ

¼ t̂j_rjκ sin ϑ − êrð _ϑþ j_rjτÞ; ðB2bÞ

_̂t ¼ n̂j_rjκ ¼ êrj_rjκ cosϑ − êϑj_rjκ sinϑ; ðB2cÞ

̈̂er¼−t̂
�
dj_rj
dt

κ cosϑþj_rj_κ cosϑ− _ϑj_rjκ sinϑ
�

− _̂tj_rjκcosϑþ êϑ

�
ϑ̈þdj_rj

dt
τþj_rj_τ

�
þ _̂eϑð _ϑþj_rjτÞ

¼−t̂
�
dj_rj
dt

κ cosϑþj_rj_κ cosϑ−2_ϑj_rjκ sinϑ− j_rj2τκ sinϑ
�

þ êϑ

�
ϑ̈þdj_rj

dt
τþj_rj_τþj_rj2κ2 sinϑcosϑ

�
− êr½ð _ϑþj_rjτÞ2þj_rj2κ2cos2ϑ�; ðB2dÞ

̈̂t¼ êr

�
dj_rj
dt

κcosϑþj_rj_κcosϑ− j_rjκ _ϑsinϑ
�
þ _̂erj_rjκcosϑ

− êϑ

�
dj_rj
dt

κsinϑþj_rj_κsinϑþj_rjκ _ϑcosϑ
�
− _̂eϑj_rjκsinϑ

¼ êr

�
dj_rj
dt

κcosϑþj_rj_κcosϑ− j_rjκ _ϑsinϑ

þð _ϑþj_rjτÞj_rjκsinϑ
�

− êϑ

�
dj_rj
dt

κsinϑþj_rj_κsinϑþj_rjκ _ϑcosϑ

− j_rjκcosϑð _ϑþj_rjτÞ
�
− t̂j_rj2κ2: ðB2eÞ

From these results the velocity and the acceleration vector
that are used in Eq. (4.12) can be computed:

_rb ¼ _rêr þ r _̂er þ _z t̂þz_̂t

¼ t̂ð_z − rj_rjκ cosϑÞ þ êϑ½rð _ϑþ j_rjτÞ − zj_rjκ sin ϑ�
þ êrð_rþ zj_rjκ cos ϑÞ; ðB3aÞ
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̈rb ¼ ̈rêr þ 2_r _̂er þ r ̈êr þ ̈z t̂þ2_z _̂tþz̈t̂

¼ t̂

�
−r

�
dj_rj
dt

κ cos ϑþ j_rj_κ cosϑ − 2_ϑj_rjκ sinϑ − j_rj2τκ sin ϑ
�
þ ̈z − j_rj2κ2z − 2_rj_rjκ cos ϑ

�

þ êϑ

�
r

�
ϑ̈þ dj_rj

dt
τ þ j_rj_τ þ j_rj2κ2 sin ϑ cosϑ

�
− 2_zj_rjκ sin ϑ

− z
�
dj_rj
dt

κ sin ϑþ j_rj_κ sinϑ − j_rj2κτ cosϑ
�
þ 2_rð _ϑþ j_rjτÞ

�

þ êr

�
−rðð _ϑþ j_rjτÞ2 þ j_rj2κ2cos2ϑÞ þ 2_zj_rjκ cosϑþ z

�
dj_rj
dt

κ cos ϑþ j_rj_κ cosϑþ j_rj2κτ sinϑ
�
þ ̈r

�
: ðB3bÞ

Finally, the following cross product is needed to obtain
the Lorentz force:

_r ×B ¼ ð_rrêr þ _rϑêϑ þ _rtt̂Þ × ðBrêr þ Bϑêϑ þ Btt̂Þ
¼ ð_rrBϑ − _rϑBrÞt̂þ ð_rtBr − _rrBtÞêϑ
þ ð_rϑBt − _rtBϑÞêr: ðB4Þ

The general differential equations are given below together
with the remaining coefficients that are not needed in
Sec. IV:

η1ðϱ0 þ η2fζ cosφÞþ ϱ00 þ η3ϱ
0

þ ½η4ðη3fþ gÞζþ η5fζ0�cosφ− ϱðφ02þ η6f2 cos2φÞ
¼ η7½−η8ð ~Eint

ϱ − ~v ~Bint
φ Þ− ðη9fϱcosφ− η10ζ

0Þð ~Bint
φ þ ~Bext

φ Þ
− ðη12ϱφ0 − η13fζ sinφÞ ~Bint

t �; ðB5aÞ

η8 ¼
1

r0
; η12 ¼

ffiffiffiffiffiffiffi
2K

p
~v

r0
; η13 ¼

ffiffiffiffiffiffiffi
2K

p
~v

r0

L
R
: ðB5bÞ

χ1ðϱφ0− χ2fζ sinφÞþϱ½φ00 þ χ3φ
0 þ χ4f2 sinð2φÞ�

þ2ϱ0φ0− ½χ5ðχ3fþ gÞζþ χ6fζ0�sinφ
¼ χ7½−χ8ð ~Eint

φ þ ~v ~Bint
ϱ Þþ ðχ9fϱcosφ− χ10ζ

0Þð ~Bint
ϱ þ ~Bext

ϱ Þ
þ ðχ11fζ cosφþ χ12ϱ

0Þ ~Bint
t �; ðB6aÞ

χ8 ¼
1

r0
; χ11 ¼

ffiffiffiffiffiffiffi
2K

p
~v

r0

L
R
; χ12 ¼

ffiffiffiffiffiffiffi
2K

p
~v

r0
: ðB6bÞ

ψ1ðζ0 − ψ2fϱ cosφÞ þ ζ00 þ ψ3ζ
0 − ψ4f2ζ − ψ5fϱ0 cosφ

þ ϱ½ψ5fφ0 sinφ − ψ6ðψ3f þ gÞ cosφ�
¼ ψ7½−ψ8

~Eint
t − ðψ9ρ

0 þ ψ10fζ cosφÞð ~Bint
φ þ ~Bext

φ Þ
þ ðψ9ρφ

0 − ψ10fζ sinφÞð ~Bint
ϱ þ ~Bext

ϱ Þ�; ðB7aÞ

ψ8 ¼
1

L
: ðB7bÞ
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