4 research outputs found

    In vitro toxicity studies of novel solar water disinfection reactors using the E-screen bioassay and the Ames test

    No full text
    Abstract Solar water disinfection (SODIS) is a cost-effective point of use method for disinfecting water, usually in a 2 L polyethylene terephthalate (PET) plastic bottle. To increase the volume of water disinfected, three novel transparent reactors were developed using PET in 25 L transparent jerrycans, polymethyl methacrylate (PMMA) in tubular solar reactors capable of delivering >20 L of water and polypropylene (PP) in 20 L buckets. In vitro bioassays were used to investigate any toxic substances leached from the plastic reactors into disinfected water as a result of exposure to sunshine for up to 9 months. The Ames test was used to test for mutagenicity and the E-screen bioassay to test for estrogenicity. No mutagenicity was detected in any sample and no estrogenicity was found in the SODIS treated water produced by the PMMA reactors or the PP buckets. While water disinfected using the PET reactors showed no estrogenicity following exposure to the sun for 3 and 6 months, estrogenicity was detected following 9 months' exposure to sunlight; however levels detected were within the acceptable daily intake for 17β-estradiol (E2) of up to 50 ng/kg body weight/day

    Laser spectroscopy of indium Rydberg atom bunches by electric field ionization

    No full text
    This work reports on the application of a novel electric field-ionization setup for high-resolution laser spectroscopy measurements on bunched fast atomic beams in a collinear geometry. In combination with multi-step resonant excitation to Rydberg states using pulsed lasers, the field ionization technique demonstrates increased sensitivity for isotope separation and measurement of atomic parameters over previous non-resonant laser ionization methods. The setup was tested at the Collinear Resonance Ionization Spectroscopy experiment at ISOLDE-CERN to perform high-resolution measurements of transitions in the indium atom from the 5s2^25d2^2D5/2_{5/2} and 5s2^25d2^2D3/2_{3/2} states to 5s2n^2np2^2P and 5s2n^2nf2^2F Rydberg states, up to a principal quantum number of n=72. The extracted Rydberg level energies were used to re-evaluate the ionization potential of the indium atom to be 46,670.107(4)cm1^{−1}. The nuclear magnetic dipole and nuclear electric quadrupole hyperfine structure constants and level isotope shifts of the 5s2^25d2^2D5/2_{5/2} and 5s2^25d2^2D3/2_{3/2} states were determined for 113,115^{113,115}In. The results are compared to calculations using relativistic coupled-cluster theory. A good agreement is found with the ionization potential and isotope shifts, while disagreement of hyperfine structure constants indicates an increased importance of electron correlations in these excited atomic states. With the aim of further increasing the detection sensitivity for measurements on exotic isotopes, a systematic study of the field-ionization arrangement implemented in the work was performed at the same time and an improved design was simulated and is presented. The improved design offers increased background suppression independent of the distance from field ionization to ion detection
    corecore