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Highlights 

 Photoelectrocatalytic (PEC) reactor tested under natural sunlight during winter.  

 Environmental strains of Escherichia coli and Pseudomonas aeruginosa inactivated. 

 Viability of bacteria assessed by culture and molecular (EMA-qPCR) methods. 

 PEC showed 2.2–3.8 higher inactivation rates than solar disinfection. 

 

Abstract  

 

In this work a photo electrochemical reactor (PEC) with a compound parabolic collector (CPC) 

has been designed and tested for the electrochemically assisted photocatalytic (EAP) 

disinfection of rainwater under real sun conditions in South Africa. The reactor consisted of a 

Ti mesh coated with aligned titania nanotubes with a carbon counter electrode in a concentric 

tubular configuration, within a borosilicate glass tube with a CPC. Environmental strains of 

Escherichia coli and Pseudomonas aeruginosa were used. The viability of the microorganisms 
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was analysed by culture-based and by EMA-qPCR methods. The reactor was tested under real 

sun during the winter in South Africa with a relatively low UV irradiance (max: 13 Wm-2). 

Under real sun irradiation, EAP yielded a 6.2-log10 reduction for E. coli and a 5.4-log10 

reduction for P. aeruginosa for culture-based analysis. The EAP treatment also showed 

improved results by EMA-qPCR analysis with a 2.4-log10 reduction in gene copies for E. coli 

and 3.0-log10 for P. aeruginosa. 

 

 

Keywords: TiO2 Nanotubes, Solar Disinfection, EMA-qPCR, Electrochemically Assisted 

Photocatalysis, Pseudomonas aeruginosa 

 

1. Introduction  

The world faces many water related challenges, with 2 billion people lacking access to a safe 

source of drinking water, 2.55 billion people affected by water shortages and 1.9 billion people 

affected by water scarcity [1, 2]. To combat the problem of fresh water shortages and scarcity, 

domestic rainwater harvesting and storage has been implemented in many countries, for 

example: Nigeria, South Africa, Australia and the USA [3].   

 

The potential use of rainwater varies between countries, from irrigation and vehicle washing, 

to potable water [3]. Nevertheless, the quality of harvested rainwater depends on the 

atmospheric conditions and the harvesting system employed. The rainwater may be polluted 

by suspended and dissolved matter from the atmosphere, and harvested rainwater may be 

polluted by chemical and microbiological contaminants from the collection surface (normally 

the house roofing), piping and storage system. Contamination from roofing materials can result 

in dissolved metal concentrations exceeding the World Health Organisation (WHO) drinking 

water guidelines e.g. the limit of 10 μg L-1 of lead is commonly exceeded [4]. Microbial and 

parasite contamination due to animal faeces is of major concern and is influenced by seasonal 

and environmental conditions. Bacterial pathogens commonly found in harvested rainwater 

include, Campylobacter spp., Salmonella spp., Shigella spp., Vibrio spp., and other 

opportunistic bacterial and parasitic pathogens such as Aeromonas spp., Pseudomonas spp., 

Legionella spp., Mycobacterium spp., Cryptosporidium spp., and Giardia spp. [4, 5]. If the 

harvested rainwater is to be used for irrigation of food crops or as potable water, pathogenic 

microorganisms must be removed or inactivated. Any technology used for disinfection for 
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potable water should achieve the standards indicated by the WHO drinking water guidelines 

[6]. For applications in the Development Assistance Committee list of low-to-middle-income 

countries the cost of treatment should be kept to a minimum without compromising on the 

efficacy of disinfection, and ideally should provide sufficient, acceptable and accessible 

potable water. 

 

Household water treatment solutions have been evaluated by the WHO and reported in the 

International Scheme to Evaluate Household Water Treatment Technologies [7]. Appropriate 

treatment methods include ultrafiltration, chlorination and solar disinfection. However, 

ultrafiltration is expensive and requires accessible replacement of filters. Chlorination is low 

cost and effective, however, if the dose is too high it affects palatability and can produce 

potential carcinogenic by-products such as trihalomethanes [8]. Furthermore, some viruses and 

protozoa are highly resistant to chlorination and the chlorine dose is difficult to control based 

on chlorine demand [9]. Of course other disinfection solutions are available but all have their 

own drawbacks e.g. UVC requires specialized lamps and ozone requires a generator, and it is 

well known that some microorganisms are resistant to UVC and ozone. While, solar 

disinfection has been extensively investigated [10-12]; disadvantages include long exposure 

times and the lack of quality assurance. Additionally, the rate of solar photo-inactivation is 

dependent on the solar irradiance and some microorganisms are more resilient to solar 

inactivation, such as Pseudomonas aeruginosa [13]. 

 

Heterogeneous photocatalysis has been reported to be effective for the inactivation of a wide 

range of microorganisms (viruses, protozoa and bacteria) and for the degradation of a wide 

range of chemical compounds found in water [14]. Titanium dioxide (TiO2) is the most 

commonly employed photocatalyst for water treatment applications. Upon excitation with UV 

photons, electron-hole pairs are formed which can either recombine releasing energy, or react 

with water and oxygen at the interface to generate reactive oxygen species (ROS) (Figure 1, 

left). In simple photocatalytic systems, the photocatalyst is added to the water as a powder 

suspension; however, using micro or nanoparticle photocatalysts in suspension-based systems 

requires post-treatment removal of the catalyst, adding cost and complexity to the system. 

Although, immobilisation of the photocatalyst onto supporting substrates has been studied [15], 

this reduces the specific surface area in contact with solution and introduces mass transport 

limitations to the reaction system. Therefore, immobilised systems tend to be less effective than 

slurry-based systems [16]. TiO2 (and other materials) exhibits fast recombination of 
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photogenerated charge carriers, thus reducing the quantum yield for the production of ROS 

[17]. In electrochemically assisted photocatalysis (EAP), the photocatalyst is immobilised on 

an electrically conducting support which acts as a photoanode in a two electrode cell where the 

application of an external electrical bias assists charge separation and improves the overall 

efficiency (Figure 1) [18]. EAP has other advantages as compared to photocatalytic systems, 

where the sites for oxidation and reduction are spatially separated, reducing surface 

recombination reactions. The photocurrent will be proportional to the irradiance in the band 

gap region and can be used to control the residence time in the reactor. Electromigration of 

negatively charged species to the photoanode may also improve mass transport. Of course, 

photoelectrochemical cells (PEC) are more complex to fabricate and are likely to have a higher 

capital cost than photocatalytic systems. EAP, like photocatalysis, does not require the addition 

of consumable chemicals other than oxygen from the air. To improve the solar efficiency, novel 

materials are required which can utilize visible photons. Other solar driven AOPs are not 

suitable for the treatment of potable water e.g. photo-Fenton requires the addition of iron and 

peroxide.        

 

Figure 1 – Diagram of the EAP process and pathways for radical production using a 

photoanode and a non-semiconducting counter electrode  
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Nanoengineering of TiO2 can be achieved by electrochemical anodisation of Ti metal in the 

presence of fluoride which results in the formation of aligned self-organised titania nanotubes 

(TiNT). These electrodes have been reported to have a higher photocurrent density and 

improved disinfection efficiency, as compared to nanoparticulate or compact oxide electrodes; 

this is due in part to the short diffusion path for photoinduced holes and a direct path for 

photoinduced electrons to the supporting electrode [19]. Additionally, the in-situ growth of the 

oxide on the parent titanium metal improves the adhesion of the titania and increases electrode 

stability [20].   

 

Carbon felt can be used as a low-cost, flexible counter electrode which can selectively reduce 

oxygen to hydrogen peroxide [21]. This is a disinfectant product which has a long lifetime in 

the range of hours to days depending on the environment, enabling long diffusion length from 

the surface of the electrode into the bulk solution [22, 23]. 

 

For the first time we have applied TiNT photoanodes with a carbon cathode in a CPC reactor 

for the EAP disinfection of rain water under real sun.  Two reactors were tested in parallel, one 

with EAP and one without EAP as a control (photo-inactivation). Two bacterial strains were 

used as model organisms, E. coli and P. aeruginosa, and viability was determined by culture 

based and molecular methods.  

 

2. Materials and methods 

 

2.1 Materials & Chemicals  

The materials and chemicals used are as follows: titanium mesh (Titanium Metals UK Ltd), 

Duran borosilicate glass tube (SCHOTT), reflective aluminum (Alanod GmbH), ethylene 

glycol (anhydrous 99.8% from Sigma-Aldrich), ammonium fluoride (≥99.99% from Sigma-

Aldrich), stainless-steel rod 316 (Aalco), carbon felt (Alfa Aesar), nutrient broth (Millipore), 

agar (Millipore), NaCl (Millipore), ethidium monoazide (Biotium), Quick-DNA™ Faecal/Soil 

Microbe Miniprep Kit (Zymo Research), and FastStart Essential DNA Green Master Mix 

(Roche Applied Science). 
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2.2 Reactor configuration & Experimental set-up 

The PEC reactor as shown in Figure 2 is of cylindrical based geometry; this was to enable the 

use of a CPC with a concentration factor of 1; which increases the solar irradiation directed 

into the reactor. The reactor container was a borosilicate tube with an external diameter of 50 

mm, capped at the bottom with a custom-made endcap to allow air purging, and had a working 

volume of 300 ml. The photoanode was titanium mesh (64% open area) coated with self-

organised TiNT. The mesh allows for the mass transport between the photoanode and the 

cathode, as well as allowing a percentage of the solar irradiation to pass through the reactor 

reducing unilluminated areas; as dark areas enable bacteria to undergo a dark-activated repair 

mechanism [24]. The high open area of the mesh reduces the surface area for photon 

absorption, therefore two cylindrical mesh’s where used each with a different diameter and 

placed inside one another as shown in the cross sectional view in Figure 2. The calculated open 

area of the two meshes is 17%. The cathode consisted of a 3 mm diameter stainless-steel rod 

wrapped with carbon felt. The cylindrical design results in the placement of the cathode at the 

center of the reactor. This may cause dark areas to be formed within the reactor, but it is 

mitigated by using the CPC which acts as a non-imaging concentrator that reflects the diffuse 

solar UV regardless of the angle and the time of the day, leading to a concentration factor of 1, 

so that the reactor tube is illuminated by one-sun equivalent in the UV range all the time [25]. 

The CPC mirror is made of anodised aluminum to maximise the reflectance of UV, as reported 

elsewhere [26, 27]. 

 

 

Figure 2- PEC reactor configuration  
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To assess the effect of only solar disinfection (photo-inactivation) a second reactor was tested 

in tandem. This reactor was of the same geometry, with a CPC but contained only the carbon 

felt on a stainless steel rod as this may act as a solar thermal heater. Solar disinfection may be 

enhanced by thermal effects but these only become important above 40oC [14]. 

 

The solar CPC-PEC reactors were tested using rainwater harvested from a local community 

site (Bonfoi, Stellenbosch, South Africa). The pH, electrical conductivity and total dissolved 

solids present in harvested rain water before and after autoclaving using a hand-held 

Milwaukee Instruments MI806 meter (Spraytech, South Africa), and the dissolved oxygen 

using a Milwaukee Instruments M600 meter (Spraytech, South Africa). These parameters were 

not markedly affected by autoclaving and remained within the general range reported for the 

Bonfoi site (Stellenbosch, South Africa) (Table 1). The conductivity of the rainwater sample 

used for the disinfection experiments was 70 µScm-1 at 21oC. The rainwater was then spiked 

with the model organisms, i.e. Escherichia coli (E. coli) and Pseudomonas aeruginosa 

(P. aeruginosa) strains isolated from rainwater samples (section 2.5) with a concentration ≥ 6 

log CFU ml-1.  

The disinfection experiments where conducted in duplicate for each organism.  The time taken 

for experiments meant that repeat runs had to be conducted on consecutive days. The solar UV 

irradiance during these experiments was similar.  For the E. coli experiments, the average UV 

(280-400 nm) irradiance on the two days was 10.8 W m-2 and 11.2 W m-2, (3.6% difference) 

with a maximum irradiance of 16.1 W m-2 and 11.2 W m-2. For P. aeruginosa experiments the 

average UV irradiance on the two days was 13.3 W m-2 and 10.7 W m-2 (19.5% difference) 

with a maximum irradiance of 11.3 W m-2 and 12.4 W m-2. 

 

A cell bias of 1.0 V was used based on the I-V curve (Figure 5) of the PEC system (TiNT - 

mesh as the anode). The CPC-PEC reactor was angled at approximately 51o which is just 

slightly lower than the optimal angle for the specific day (~57o, coordinates 33.93o S, 18.86o 

E) to have the maximum solar irradiation at solar noon [28].    

 

The UV data for the days in which the experiments where conducted was obtained from 

Stellenbosch Weather Services, Engineering Faculty, Stellenbosch University: 

http://weather.sun.ac.za. A Kipp & Zonen UVS-AB-T radiometer with solar tracking was used 

to measure the power density (Wm-2) for UVA between 315 - 400 nm and UVB between 280 

- 315 nm at 1 min intervals.  
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Table 1 - Mean physico-chemical parameters recorded in untreated rainwater and after the 

rainwater was sterilised by autoclaving. 

Parameter 
Untreated 

Rainwater 

Autoclaved 

Rainwater 

Range reported for rainwater 

collected from the Bonfoi 

community site [29] 

pH 7.40 ± 0.01 8.60 ± 0.08 5.66 – 8.85 

Dissolved oxygen (mg L-1) 5.30 ± 0.10 5.75 ± 0.15 5.2 – 9.2 

Electrical conductivity 

(mS cm-1) 
0.14 ± 0.00 0.14 ± 0.00 0.04 – 0.14 

Total dissolved solids  

(mg L-1) 
0.07 ± 0.00 0.07 ± 0.00 0.02 – 0.09 

 

 

2.3 Electrode preparation 

The titanium mesh was cut to size and rolled into cylinders followed by anodisation to produce 

self-organised TiNT. The anodising was conducted using a 2-electrode process as shown in 

Figure 3. The cathodes were a titanium mesh and a stainless-steel rod, the working electrode 

was the titanium mesh to be used in the PEC reactor. The electrolyte solution contained 

ethylene glycol (97 vol%), water (3 vol%) and NH4F (0.3 wt%) in a polypropylene container 

as previously reported by Yeonmi et al. [30]. A potential difference of 30 V was applied for 3 

hours and then washed in distilled water followed by annealing at 450oC for 1 hour (ramp up 

2°C min-1 up and ramp down 2°C min-1). Confirmation of tube growth was done by imaging 

with scanning electron microscopy (SEM) (Hitachi FESEM SU5000).  

 

Figure 3 – Electrode configuration for anodisation 
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2.4 I-V curves for different conductivities 

The photocurrent-voltage (I-V) response was measured for different conductivities of NaCl. 

The solutions were made using distilled water, adjusted using NaCl and measured using a 

Mettler Toledo SevenEasy conductivity meter. A bias between 0 - 2 V was applied to the PEC 

reactor using a PLH120 DC power supply from Aim-TTi and the current was measured using 

a digital multimeter 1351 from Data Precision. To ensure a uniform source of irradiation a 

1000 W Xe lamp was used which has an average UV intensity of 44 Wm-2. All other 

experiments where performed under real solar conditions in South Africa.  

 

2.5 Microbial analysis 

 

2.5.1 Bacterial cultures  

The systems were tested using two environmental Gram-negative bacterial strains, E.coli (S7 

13) as the benchmark organism and P. aeruginosa (S1 68) which has been reported to have a 

higher resistance to solar disinfection than E.coli [14] and is commonly present in domestic 

rainwater harvesting sources [31]. The strains were obtained from the Water Resource 

Laboratory culture collection (Department of Microbiology, Stellenbosch University) and were 

previously isolated and identified by Clements et al. [32] from untreated harvested rainwater 

(E. coli S7 13) and from rainwater following treatment > 70°C using a solar pasteurisation 

system (P. aeruginosa S1 68). 

 

A fresh liquid culture of was prepared for each experiment, following the same produce. 200 

mL of nutrient broth was inoculated with 1 colony forming unit (CFU) of the selected bacteria 

to be tested and incubating at 30oC for 18 hours on a rotary shaker. The inoculated broth was 

then centrifuged at 8000 RPM for 15 min to form a pellet. The supernatant was then discarded, 

and the cells were re-suspended in 50 ml of 0.85% NaCl. The optical density was measured to 

determine the concentration in CFU mL-1, the autoclaved rainwater was then spiked to ensure 

a concentration of ≥106/ 6 log CFU mL-1. This is significantly higher than the reported 

concentration of E. coli in rainwater harvesting systems <2.5 x 102 CFU 100 ml-1 (0.4 log CFU 

ml-1) [33]; however, the total heterotrophic bacterial counts are in the range of 3-5 log CFU ml-

1 [34] and the WHO stipulates that for the highest level of bacterial protection a HWT system 

must achieved > 4 log CFU mL-1; therefore an initial concentration of at least 6 log CFU mL-1 

is required [7]. 
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2.5.2 Enumeration of microorganisms  

Water samples were collected from the reactors at set time intervals (0, 30, 60, 120, 180 and 

240 minutes). Serial dilutions where made using 0.85% NaCl and 100 μL was spread plated on 

nutrient agar in duplicate. The plates for both microorganisms were incubated at 37oC 

overnight (18 h) and the CFU was enumerated.  The results of enumeration are expressed as 

the average CFU mL-1 for each sample time and deviation of all data shown using error bars. 

When low counts of bacteria were expected, plating with no dilution was performed using 100 

μL, thus giving a detection limit (DL) of 10 CFU ml-1 (1 log10).  

2.5.3 Viability analysis using EMA-qPCR 

Ethidium monoazide bromide (EMA) is a nucleic acid-binding dye that can be used as a pre-

treatment step before quantitative real-time polymerase chain reaction (qPCR) to assess the 

viability of bacteria based on the cell’s membrane integrity. If the integrity of the membrane 

has been affected during the treatment process, EMA will bind to the DNA and will prevent 

amplification of the bound DNA during qPCR; the DNA from cells with intact membranes will 

however amplify [35].    

 

EMA-qPCR was performed on each sample taken from the reactors. The samples were treated 

with EMA following the method described by Reyneke et al. [36]. To summarise 2.5 µg ml-1 

of EMA was added to 1 ml of sample in a dark room, vortexed and left on ice for 10 min, 

followed by a 15 min 500W halogen lamp exposure (Eurolux, South Africa) enabling the 

photosensitive EMA to crosslink with the DNA. Following photoactivation, 1 ml of 0.85% 

NaCl was added to the sample, vortexed and centrifuged at 16,000 RCF for 5 min. The 

supernatant was then removed and DNA extraction performed using the Quick-DNA™ 

Faecal/Soil Microbe Miniprep Kit following the manufacturer’s instructions. The qPCR 

reaction mixture, quantification curve and procedures as reported by Waso et al. [34] was used. 

Briefly, the qPCR reaction mixture (20 µL) contained: 10 µL FastStart Essential DNA Green 

Master Mix, 5 µL of template DNA, 0.4 µL (0.2 µM) forward and reverse genus-specific 

primers and 4.2 µL of PCR-grade water. The qPCR primers and cycling parameters are shown 

in Table 2. Melt curve analysis was included for all qPCR assays in order to verify the 

specificity of the primer set by ramping the temperature from 65 to 97°C at a rate of 0.2°C s-1 

with continuous fluorescent signal acquisition at 5 readings °C-1. To prepare the standard 

curves for the quantification of E. coli and P. aeruginosa, DNA (positive control DNA) was 
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extracted from pure cultures using the Quick-DNA™ Faecal/Soil Microbe Miniprep Kit 

according to the manufacturer’s instructions. The obtained DNA was amplified in conventional 

PCR reactions using the primers and cycling parameters outlined in Table 2, whereafter the 

amplicons were purified and concentrated using the Wizard® SV Gel and PCR Clean-up 

System (Promega) according to the manufacturer’s instructions. Following DNA concentration 

determination using a NanoDrop® ND-1000 (Nanodrop Technologies Inc.), the DNA 

concentration and gene product size were then used to calculate the dilution required to obtain 

a final DNA concentration of 109 gene copies (GC) μL-1 and 10-fold serial dilutions were 

prepared (109 GC µL-1 to 100 GC µL-1). All qPCR was performed on a LightCycler®96 

instrument (Roche Applied Science Mannheim, Germany) and analysed using LightCycler®96 

software version 1.1.  

 

Table 2 – Primers and cycling parameters utilised for GC quantification for E. coli and 

Pseudomonas spp. 

Organis

m 
Primer Primer Sequence 

qPCR cycling 

Parameters 

Target Gene 

& Product 

Size (Base 

Pairs) 

Reference 

E. coli 

784 F 
GTGTGATATCTA

CCCGCTTCGC 

10 min at 95oC; 

50 cycles of 95oC 

for 15s, 

60oC for 1 min, 

final elongation at 

72oC for 10 min 

uidA gene 

(80 bp) 
[37] 

866 R 
AGAACGGTTTGT

GGTTAATCAGGA 

Pseudom

onas 

spp. 

PS1 
ATGAACAACGTT

CTGAAATTC 

10 min at 95°C; 

50 cycles of 30 s 

at 94°C, 30 s at 

58°C and 30 s at 

72°C 

oprI gene 

(249 bp) 

 

[38] 

PS2 
CTGCGGCTGGCT

TTTTCCAG 

 

The samples were analysed in duplicate and the average GC concentrations were used. The 

detection limit was calculated from the quantification curve, using the average of the lowest 

level of detection; each qPCR run uses a new quantification curve thus the DL varies based on 

the lowest value of the curve. The GC values were converted from GC µL-1 to GC 100 mL-1 

original sample using the equation by Rajal et al. [39] (Eq. 1).  

 

mL Original Sample per qPCR reaction =

 (
mL Original Sample Filtered

mL After Filtration
) x (

mL Used in DNA Extration 

Ml DNA Eluted 
) x mL per qPCR   (1) 
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3. Results 

 

3.1 Electrode characterisation 

Following anodisation the TiNT were analysed using SEM as shown in Figure 4.  

 

Figure 4 – a) showing the alignment of the tube, b) length of TiNT, c) flat area used to 

analyse tube diameter, d) histogram of tube diameter 

The SEM images showed coverage of the highly ordered nanotubes across the surface of the 

material. As shown in Figure 4a, the tubes appear to change orientation from one side to the 

other of the sample. This could be attributed to the changing surface geometry relative to the 

electron beam and/or changes in local electric field when anodising due to the changing tangent 

of the cylindrical electrodes and therefore changing the direction of tube growth [40]. Figure 

4b and Figure 4c were used to measure the length and diameter of the nanotubes respectively. 

The length of the nanotubes were between 2.37 – 2.52 µm and the average diameter of the 

nanotubes was 92 nm with a standard deviation of 9.9 from a sample size of 65. A histogram 

of the nanotubes size distribution is shown in Figure 4d; it shows a normal distribution pattern. 
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The length and size of the nanotubes are comparable to others reported when anodising at 30V 

for 3 hours [41, 42].   

 

3.2 Photocurrent response for different conductivities 

The optimal cell potential reported in literature for TiO2 electrodes changes depending upon 

the reactor geometry and set-up, the conductivity/electrolyte of the solution and the target 

contaminates [43, 44]. As expected, the photocurrent increases with decreasing solution 

resistance and the bias at which photocurrent saturation begins, also decreases (Figure 5). The 

bias used for disinfection was 1.0 V, which has been a commonly reported potential when 

running PEC systems [45-47]. This is close to the potential for maximum photocurrent with 

the rainwater conductivity of 70 µScm-1. Pablos et al. [47] had improved disinfection results 

with a cell potential of 1.4 V compared to 1 V but the optimum applied potential required will 

depend on the cell resistance. It should also be noted that there is not a direct relationship 

between the photocurrent and the rate of disinfection when comparing different photoanode 

materials: However, for any one photoanode, the maximum photocurrent is a measure of 

maximum charge carrier separation and, therefore, should correlate to the maximum rate of 

disinfection [19]. 

 

Figure 5 – I-V curve of the PEC reactor 

 

3.3 Correlation of photocurrent and UV intensity    

The photocurrent was recorded and correlated to the UV intensity. As taking samples from the 

reactor reduced the volume and surface area of electrodes in contact with the solution there was 

a reduction in the current, to account for this the current was adjusted by multiplying the current 

by the ratio of the volume reduction (original volume/volume remaining after taking sample). 
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The current changes as the UV intensity changes during the experiment as shown in Figure 6a. 

Plotting a graph of the adjusted current with respect to UV intensity shows a linear correlation 

(Figure 6b). The correlation is mathematically expressed in Eq. 2.  

 

 

Figure 6 – a) UV (280–400 nm) data and current data from PEC reactor, b) correlation 

between UV radiation and recorded current data  

UV (Wm−2) =
Total Current−Dark Current

System Constant (0.2697)
      (2) 

 

3.4 Enumeration and viability of E. coli & P. aeruginosa 

The rainwater disinfection experiment for E. coli was performed under real sun radiation during 

winter (high rainfall period in South Africa).  Experiments were duplicated and the average 

UV (280-400 nm) irradiance on the two days was 10.8 W m-2 and 11.2 W m-2, (3.6% 

difference).  The data in Figure 7 (a) shows the average between the repeat experiments. There 

was a significant increase in the rate of inactivation of E.coli with the PEC system operating at 

1.0 V in comparison to the photo-inactivation alone (Figure 7a). With the PEC reactor, a 5.5 

log reduction of E. coli CFU ml-1 was observed in 4 h of irradiation as compared to a 3.1 log 

reduction for photo-inactivation. As E. coli may still be viable but in a nonculturable state after 

the EAP treatment [48], viability analysis was used, applying the EMA-qPCR method (Figure 

7b). The results clearly showed that the damage produced by the mere action of the solar 

radiation had a very limited effect on the cell membrane, as only a small 0.45 log reduction in 

the E. coli GC concentration was recorded in 4 hours of solar treatment (using only photo-

inactivation) (Figure 7b). In contrast, the PEC reactor yielded a 2.4 log reduction in the E. coli 
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GC (Figure 7b), indicating that the cell membrane had been damaged and a larger quantity of 

the bacteria were no longer viable. 

 

 

Figure 7 – a) Culture-based analysis for the reduction in E. coli and UV irradiation.  The data 

points are the average from two experiments where the error is the standard deviation 

(including analytical and experimental) and the UV is the average, b) EMA-qPCR gene copies 

(analytical error only). (UV =  280-400 nm, UVB = 280-315 nm)  

 

For the disinfection tests with spiked P. aeruginosa the average UV irradiance on the two days 

was 13.3 W m-2 and 10.7 W m-2. The culture based analysis results (Figure 8a) showed a 2.7 

log reduction in P. aeruginosa for photo-inactivation after 1 h of irradiation and no further 

reduction was observed during the experiment, indicating that P. aeruginosa is more resistant 

to solar photo-inactivation consistent with previous reports [49]. In the PEC reactor, a total 

reduction of 5.8 log was observed. Molecular viability analysis for P. aeruginosa using EMA-

qPCR (Figure 8b) indicated a 0.91 log reduction of GC for photo-inactivation as compared to 

a 3 log reduction with PEC, reaching the detection limit.   
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Figure 8 – a) - Culture-based analysis for the reduction in P. aeruginosa and UV irradiation. 

The data points are the average from two experiments where the error is the standard deviation 

(including analytical and experimental) and the UV is the average, b) EMA-qPCR gene copies. 

(analytical error only).  (UV = 280-400 nm, UVB = 280-315 nm). 

 

4. Discussion 

The application of viability dyes, and specifically EMA, in combination with qPCR to detect 

viable cells has been proven to be effective for certain Gram-positive (E. faecalis) and Gram-

negative organisms (P. aeruginosa and S. typhimurium) [50]. Moreover, the use of the same 

technique to distinguish between live and dead cells was used by Polo-Lopez et al. [51] for the 

detection of Legionella jordanis in water [51]. The EMA-qPCR method was used in the current 

study to distinguish between live and dead bacterial cells as it effectively suppresses the signal 

from extracellular DNA or internal DNA from cells with damaged membranes. However, it 

may also pass through the intact membrane of live cells or even be cytotoxic to viable cells in 

high concentrations [35]. Therefore, while it is a very good method to establish the viability of 

microbial cells, adequate concentrations of the viability dye have to be applied in order to 

obtain reliable results. An EMA-qPCR method optimised by Reyneke et al. [50] was thus used 

in the current study for the detection of the two test organisms.   

 

In this work, the disinfection experiments compare two different processes i.e., solar photo-

inactivation and the solar driven EAP disinfection. Both produce either lethal or sublethal 

damage to bacterial cells via different mechanisms. Photo-inactivation relies on the absorption 
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of solar UV photons by several components of the bacteria called chromophores. UVB causes 

DNA damages resulting from its direct absorption by DNA, effectively preventing its 

replication or producing mutations [52]. Other mechanisms are recognised as responsible for 

the microbial inactivation, which include the direct absorption of UVA radiation by DNA, and 

the oxidative attacks of internal ROS generated by the absorption of UVA radiation by internal 

chromophores [53]. The photogenerated ROS can damage the DNA producing single strand 

breaks, lead to the formation of pyrimidine dimers, oxidise proteins and lipids, or produce 

losses in the permeability of the cell membrane compromising cells [54]. Research 

investigating solar inactivation shows a high reduction in CFU of >4 log for E. coli; which is 

classified as highly protective in terms of bacterial reduction by the WHO [55, 56]. In this 

research, a lower reduction of 3.1 log CFU ml-1 for E. coli was observed using photo-

inactivation. This could be due to the low dose of solar UV radiation (290-400 nm) which 

amounted to 161.3 kJm-2 and the use of environmental bacterial isolates, which could be more 

resistant to solar inactivation as compared to traditionally used laboratory strains [13]. The 

work of Cruz-Ortiz et al. [57] reported a slightly higher reduction of 3.6 log for E.coli, for 

photo-inactivation using a solar simulated source with a much higher UV dose of 574.4 kJm-2. 

The experiments in this work were however, conducted under real sun during winter days in 

South Africa with low UV intensity values, ca. 76% lower than a normal sunny day in a 

moderate latitude with air mass of 1.5. The solar inactivation of P. aeruginosa in this work 

resulted in 2.7 log CFU ml-1 reduction after receiving a cumulative dose of 155.0 kJm-2 during 

the 4-hour experiment. P. aeruginosa is less commonly reported as a model organism for solar 

disinfection but more resilient than E. coli. The reported UV dose for a 5 log reduction is 1440 

kJ m-2 under simulated solar irradiation [58] and the dose for a 1 log reduction has been reported 

to be 72 kJ m-2 under real solar conditions [13]. The latter correlates closely to the result 

obtained in this study. At sub-lethal doses of UV, bacteria have the ability to repair their 

damaged DNA [59]. Photoreactivation uses the photolyase enzyme to repair the damaged 

DNA, which requires wavelengths between 300-500 nm (present in solar irradiation) [60]. 

Nucleotide excision repair is an important repair mechanism after the exposure to UV. It is a 

complex multiple step non-light dependent biochemical process requiring a number of different 

enzymes [61]. Therefore, it is difficult to provide quality assurance for solar photo-inactivation 

alone due to daily variations in solar irradiance and different resistance and repair mechanisms 

of naturally occurring bacteria.   
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Solar driven EAP disinfection requires a more complicated reactor but resulted in greater and 

more effective inactivation of bacteria, with a 5.5 log reduction of E. coli CFU ml-1 observed 

in 4 h and a 5.8 log reduction in P. aeruginosa CFU ml-1 recorded. Higher EMA-qPCR 

inactivation efficiencies were also obtained for both test organisms using the EAP reactor in 

comparison to simple photo-inactivation. This is due to the combined effect of photo-

inactivation and reactive oxygen species formed through electrochemically assisted 

photocatalysis. Under irradiation, the TiO2 nanotube electrode produces hydroxyl radical’s 

(•OH) which have a very positive electrochemical reduction potential of +2.18 V (NHE at pH 

7) but has a short lifetime of <40 µs resulting in a short diffusion length of 1.4 nm [22, 62]. 

The •OH is the main radical reported for disinfection, however there are other pathways 

responsible for disinfection. The •OH can react with other species present in rainwater, such as 

bicarbonate (HCO3
-
) to form carbonate radical (CO3

•−
) which has a longer lifetime of ~8 ms, 

but a lower oxidation potential (1.59 V vs NHE pH 7) than the •OH. It is capable of oxidising 

guanine (1.29 V vs NHE) and has been shown to inactivate E. coli and MS2 coliphages [63, 

64]. Rainwater also contains small amounts of chloride (Cl-) in the range of 19 - 322 µeq L-1 

depending on the geographical region [65]. Chloride can be oxidised to form reactive chlorine 

species (RCS), such as chloride radicals and chorine which contribute to the inactivation of 

microorganisms [65]. 

 

At the cathode side, the one electron reduction of oxygen leads to the production of superoxide 

(O2
•−

) or hydroperoxyl radical (HOO•). A further one electron reduction results in hydrogen 

peroxide (H2O2), which can be further reduced to form OH radicals. Unmodified carbon felt 

was used as a cathode in this reactor. Carbon can act as an electrocatalyst for the selective 

reduction of dissolved O2 to produce H2O2 [21, 66-68]. Subsequent one electron reduction of 

H2O2 yields •OH at the cathode. The cathode may be further enhanced for the production of 

H2O2 by using electrocatalysts. The work of Sun et al. [68] used modified mesoporous carbon 

which exhibited high selectively towards H2O2 and improved yield. 

 

The conductivity of the water will have a significant effect on the current as shown in Figure 

5. By Faradays law, increasing the current will increase the number of ROS, provided the 

efficiency remains the same [69]. However, with increased conductivity there are more ions 

that will scavenge •OH and the increased ionic strength reduces the electrophoretic mobility of 

bacteria [70]. Therefore, the relationship between ionic strength, photocurrent and disinfection 

rate is not a simple one. Cho et al. [17] used a particulate film of TiO2 immobilised on indium 

Jo
ur

na
l P

re
-p

ro
of



tin oxide coated glass the photoanode with a stainless steel counter electrode back faced 

irradiated with a UV lamp. The authors demonstrated that increasing the conductivity using 

phosphate buffer up to 40 mM (estimated to be ~6 mScm-1) improved the rate of disinfection 

of MS2 coliphages, while increasing further to 60 mM (estimated to be ~9 mScm-1) resulted in 

longer times to achieve a 2 log reduction. They also reported that a high current density doesn’t 

result in a high rate of disinfection, because of electro-osmotic repulsion of the MS2 coliphage 

away from the photoanode where the formation of surface •OH presides, the main radical 

responsible for the inactivation of MS2 coliphages. Pablos et al. [47] tested for the inactivation 

of E. coli using 100 mM Na2SO4 (16 mScm-1) and synthetic municipal wastewater (0.04 mScm-

1), both of which resulted in a similar rate of disinfection indicating that very high and very low 

conductivities are suboptimal. Koo et al. [65] tested for the disinfection of E. coli using 100 

mM Na2SO4 (16 mScm-1) in a saline solution. Results indicated that the addition of the 50 mM 

of NaCl improved the rate of disinfection due to the oxidation of chloride forming RCS as 

discussed previously. Therefore, the nature and concentration of ions present in the water will 

have a significant effect on the rate of EAP disinfection. To summarise, the presence of chloride 

ions is beneficial for inactivation as RCS can be formed. Increased ionic strength will yield 

higher photocurrent due to lower cell resistance. Increased photocurrent should yield more 

ROS but the increased ionic strength means there are more ions to scavenge the ROS. As ionic 

strength increases, the electrophoretic mobility of microorganisms towards the photoanode is 

decreased. Accordingly, there is an optimal conductivity based on the work of Cho et al. [17] 

around 6 mS cm-1 which results in the best rate for disinfection but that will also be dependent 

on the nature of the ions in solution.  However, for the disinfection of harvested rain water for 

potable use it is not desirable to add salts to increase the conductivity and the results of this 

work demonstrate that solar EAP can effectively disinfect harvested rain water, without 

adulteration. 

 

5. Conclusions 

Culture-based and viability-based methods were used to evaluate the performance of a PEC 

reactor using a mesh photoanode with self-organised TiNT, tested using solar irradiation with 

a low average UV intensity (10.7 – 13.3 Wm-2) for the disinfection for both E. coli and P. 

aeruginosa in low conductivity rainwater (70 Scm-1). The PEC reactor demonstrated 

significant improvement in reduction of both organisms compared to photo-inactivation alone. 

For culture-based methods the PEC reactor achieved an averaged 5.5 log reduction for E. coli 
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and 5.8 log reduction in P. aeruginosa. The viability-based methods show that the organisms 

could potentially still be viable when using only solar photo-inactivation. The PEC also had 

significantly improved results when monitoring the system using molecular-based viability 

methods that may account for the presence of viable but non-culturable cells, with a 2.4 log 

reduction for E. coli and 3.0 log reduction in P. aeruginosa recorded. While a PEC reactor is 

more complicated and more costly than a solar disinfection reactor, it will provide a faster and 

more effective disinfection treatment, particularly for organisms which have a greater 

resistance to photo-inactivation. The use of EAP reactors for the disinfection of water still 

needs further improvements which could be accomplished by modelling the reactors, using thin 

cell reactors to reduce IR losses/improve mass transport, devolvement into a flow set-up to 

treat larger volumes, the use of electrocatalysts on the cathode such as mesopores nitrogen 

doped carbon, improvements in the efficiency of photoanode by utilising visible light and 

critical analysis of possible disinfection by-products.  
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