39,247 research outputs found

    Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties

    No full text
    International audienceThe carbon (C) cycle in boreal regions is strongly influenced by fire, which converts biomass and detrital C mainly to gaseous forms (CO2 and smaller proportions of CO and CH4), and some 1?7% of mass to pyrogenic C (PyC). PyC is mainly produced as solid charred residues, including visually-defined charcoal, and a black carbon (BC) fraction chemically defined by its resistance to laboratory oxidation, plus much lower proportions of volatile soot and polycyclic aromatic hydrocarbons (PAHs). All PyC is characterized by fused aromatic rings, but varying in cluster sizes, and presence of other elements (N, O) and functional groups. There are several reasons for current interest in defining more precisely the role of PyC in the C cycle of boreal regions. First, PyC is resistant to decomposition, and therefore contributes to very stable C pools in soils and sediments. Second, it influences soil processes, mainly through its sorption properties and cation exchange capacity, and third, soot aerosols absorb solar radiation and may contribute to global warming. However, there are large gaps in the basic information needed to address these topics. While charcoal is commonly defined by visual criteria, analytical methods for BC are mainly based on various measures of oxidation resistance, or on yield of benzenepolycarboxylic acids. These methods are still being developed, and capture different fractions of the PyC "continuum". There are few quantitative reports of PyC production and stocks in boreal forests (essentially none for boreal peatlands), and results are difficult to compare due to varying experimental goals and methods, as well as inconsistent terminology. There are almost no direct field measurements of BC aerosol production from boreal wildfires, and little direct information on rates and mechanisms for PyC loss. Structural characterization of charred biomass and forest floor from wildfires generally indicates a low level of thermal alteration, with the bulk of the material having H/C ratios still >0.2, and small aromatic cluster sizes. For the more chemically-recalcitrant BC fraction, a variety of mainly circumstantial evidence suggests very slow decomposition, with turnover on a millennium timescale (5000?10 000 y), depending on environmental conditions and PyC properties, but the main limitation to PyC storage in soil is likely consumption by subsequent fires. Degraded, functionalized PyC is also incorporated into humified soil organic matter, and is transported to sediments in dissolved and particulate form. Boreal production is estimated as 7?17 Tg BC y?1 of solid residues and 2?2.5 Tg BC y?1 as aerosols. Primary research needs include basic field data on PyC production and stocks in boreal forests and peatlands, suitable to support C budget modeling, and development of standardized analytical methods and of improved approaches to assess the chemical recalcitrance of typical chars from boreal wildfires. To accomplish these goals effectively will require much greater emphasis on interdisciplinary cooperation

    On reaction-subdiffusion equations

    Get PDF
    To analyze possible generalizations of reaction-diffusion schemes for the case of subdiffusion we discuss a simple monomolecular conversion A --> B. We derive the corresponding kinetic equations for local A and B concentrations. Their form is rather unusual: The parameters of reaction influence the diffusion term in the equation for a component A, a consequence of the nonmarkovian nature of subdiffusion. The equation for a product contains a term which depends on the concentration of A at all previous times. Our discussion shows that reaction-subdiffusion equations may not resemble the corresponding reaction-diffusion ones and are not obtained by a trivial change of the diffusion operator for a subdiffusion one

    On The Determination of MDI High-Degree Mode Frequencies

    Full text link
    The characteristic of the solar acoustic spectrum is such that mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases for a given order. A direct consequence of this property is that individual p-modes are only resolved at low and intermediate degrees, and that at high degrees, individual modes blend into ridges. Once modes have blended into ridges, the power distribution of the ridge defines the ridge central frequency and it will mask the true underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present the results of fitting high degree power ridges (up to l = 900) computed from several two to three-month-long time-series of full-disk observations taken with the Michelson Doppler Imager (MDI) on-board the Solar and Heliospheric Observatory between 1996 and 1999. We also present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than some ad hoc correction scheme) resulting in a methodology that can produce an unbiased determination of high-degree modes, once the instrumental characteristics are well understood. Finally, we present changes in high degree mode parameters with epoch and thus solar activity level and discuss their significance.Comment: 59 pages, 38 figures -- High-resolution version at http://www-sgk.harvard.edu:1080/~sylvain/preprints/ -- Manuscript submitted to Ap

    The Two-Loop Euler-Heisenberg Lagrangian in Dimensional Renormalization

    Full text link
    We clarify a discrepancy between two previous calculations of the two-loop QED Euler-Heisenberg Lagrangian, both performed in proper-time regularization, by calculating this quantity in dimensional regularization.Comment: 12 pages, standard Latex, no figures, uses a4wide.st

    Vacuum discharge as a possible source of gamma-ray bursts

    Get PDF
    We propose that spontaneous particle--anti-particle pair creations from the discharged vacuum caused by the strong interactions in dense matter are major sources of γ\gamma-ray bursts. Two neutron star collisions or black hole-neutron star mergers at cosmological distance could produce a compact object with its density exceeding the critical density for pair creations. The emitted anti-particles annihilate with corresponding particles at the ambient medium. This releases a large amount of energy. We discuss the spontaneous ppˉp\bar{p} pair creations within two neutron star collision and estimate the exploded energy from ppˉp\bar{p} annihilation processes. The total energy could be around 1051−105310^{51} - 10^{53} erg depending on the impact parameter of colliding neutron stars. This value fits well into the range of the initial energy of the most energetic γ\gamma-ray bursts.Comment: 12 pages, Latex, 2 figures included; replaced by the revised version, Int. J. Mod. Phys. E in pres

    Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures

    Get PDF
    Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is developed to relate the observed fluctuations to the statistics of single particle wavefunctions. In a quantitative theory correlation functions are calculated. By comparing the experimental and theoretical correlation functions the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on energy is extracted.Comment: 41 pages, 14 figure

    Does ultrasonic dispersion and homogenization by ball milling change the chemical structure of organic matter in geochemical samples?—a CPMAS 13C NMR study with lignin

    Get PDF
    6 pages, 2 figures, 2 tables, 23 references.Ultrasonic dispersion of geochemical samples suspended in water and subsequent homogenization by ball milling is widely used for fractionation of organic matter. The effect of these treatments on organic matter is investigated with lignin as a model compound. Structural alterations detectable by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy were examined. Comparison of the solid-state 13C NMR spectra of untreated lignin and lignin mixed with quartz or soil did not reveal evidence for structural changes in the organic matter composition after ultrasonic dispersion and subsequent ball-milling. The chemical structure of organic matter in geochemical samples is not affected by these treatments as far as such structural alterations can be detected by solid-state 13C NMR spectroscopy.This work was financially supported by the Deutsche Forschungsgemeinschaft (Ko 1035/6-land 2) and the Deutscher Akademischer Austauschdienst (Ref. 315, D/94/16993).Peer reviewe

    Airborne contamination of forest soils by carbonaceous particles from industrial coal processing

    Get PDF
    In the German Ruhr-area industrial coal processing emitted large amounts of carbonaceous particles for a century until 1970. Our objectives were to detect the presence of airborne carbonaceous particles and assess their impact on the chemical structure of soil organic matter in two forest soils (Podzols) with potential sources of carbonaceous particles approximately 10 to 30 km away. Contamination was not visible macroscopicaily. Organic matter was characterized in bulk soils and in particle-size separates by elemental analysis, magnetic susceptibility measurement, reflected light microscopy, and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Organic and mineral horizons contained carbonaceous particles including char, coke, and bituminous coal from coal combustion, coking, coal processing, and steel production. In the organic horizons of both soils we observed a material high in magnetic susceptibility (max. 109 × 10−8 m3 kg−1), whereas in the mineral horizons only the Podzol with an intense intermixing moder-type humus had high magnetic susceptibly. This Aeh horizon was extremely rich in organic carbon (139.4 g organic C kg−1), concentrated in the 20 to 2000 ”m size separates. In the second Podzol, like in many natural soils, C concentrations were largest in the <20 ”m separates. Bloch decay 13C magic angle spinning (MAS) NMR spectroscopy revealed a highly aromatic structure of the carbonaceous particles. Airborne carbonaceous particles formed a macroscopically indistinguishable mixture with natural soil organic matter and could be present in many soils neighboring industrialized areas.Peer reviewe

    Mesoscopic description of reactions under anomalous diffusion: A case study

    Full text link
    Reaction-diffusion equations deliver a versatile tool for the description of reactions in inhomogeneous systems under the assumption that the characteristic reaction scales and the scales of the inhomogeneities in the reactant concentrations separate. In the present work we discuss the possibilities of a generalization of reaction-diffusion equations to the case of anomalous diffusion described by continuous-time random walks with decoupled step length and waiting time probability densities, the first being Gaussian or Levy, the second one being an exponential or a power-law lacking the first moment. We consider a special case of an irreversible or reversible A ->B conversion and show that only in the Markovian case of an exponential waiting time distribution the diffusion- and the reaction-term can be decoupled. In all other cases, the properties of the reaction affect the transport operator, so that the form of the corresponding reaction-anomalous diffusion equations does not closely follow the form of the usual reaction-diffusion equations
    • 

    corecore