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Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures
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Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the
local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of
correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is
developed to relate the observed fluctuations to the statistics of single-particle wave functions. In a quantitative
theory correlation functions are calculated. By comparing the experimental and theoretical correlation func-
tions, the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on
energy is extracted.
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[. INTRODUCTION quasiparticle¥' diffusing coherently within a length scale re-
lated to their lifetime at a particular energy. Since the
The observation of impurity-assisted tunneling in verticalAharonov-Bohm phase accumulated by a diffusing particle
transport experiments on double-barrier semiconductoin a magnetic field changes the interference pattern, such a
heterostructurés®led to the possibility of using the resonant fine structure Sv(E), depends randomly on a magnetic field
impurity level as a local probe of electronic states of elec-B, |n tunneling experiments, the interfering quasiparticle is,
trodes prepared from heavily doped degenerate semicondugr fact, a “hole” in the Fermi sea left behind by the tunneling
tors. A number of experiments in strongly asymmetricof an electron out of the emitter WitE<p. Being in a
doub]e—barrier structures have measured directly t_he |°C5H0nequilibrium state, such a hole “floats up” towards the
density of statedLDOS) of an electrode as a function of o i jevel, due to inelastic collisions between electrons, so

excitation energiE from Fhe Fermi _Ieveﬁ those_ with _the that it can be characterized by a finite lifetime equivalent to
highest spe(_:tr_al reSOlL.jt'On reporting featur_es |ncl_ud|ng th% broadening of emitter stat&sThe broadening of emitter
Zeeman splitting of single-particle levels in a dlsorderecistates suppresses the finest features in the LDOS fluctuations,

emitter? . .
The idea of such experiments is illustrated by the sketcl‘?nd’ therefore, it strongly affect_s the amplitude a‘.‘d Co”.e'a'
ion parameters of fluctuations of the differential

in Fig. 1. Electrons tunnel from a heavily doped disordere . . .
emitter through the energetically lowest level of the quantumcondUCtan(’Jé of a given resonant tunneling devicG(V)

well sandwiched between the double barriers. This energetFG(V)_<G>' A particularly convenient situation to study

cally lowest level of the quantum well serves as the SpeC_Iuctuatlons is realized in devices where the mean value of

trometerS. At zero bias, the energy of this impurity level, :Ee deﬂstlgy gf states in _the emlﬁerl and ?rllso tfhe t]rc;am\:,mlﬁsmn
Eg, does not coincide with the chemical potentialin the rougn the barriers varies much slower than finé fuctuations

emitter. It comes to resonance only after the bias voltag LD.OS’ SO tha:(wrllthmthe harrow enerlgy Tterval below the

reaches a threshold valuég(Eg). Typical current-voltage ermi energy of the emittefG) is negligible andsG(V)

(V) characteristics of such a device can be divided into%G(V)' & . .

three interval2->1lone interval below the threshold, where _ REcently, we reportetian experiment where the speeding
up of the quasiparticle relaxation upon the increase of the

| ~0; the threshold regim&~Vg(Eg), wherel (V) under- o i o
goes a jump when the resonant level crosses the Fermi Ievgpergetlc distance to the Fermi leveQual to the excitation

1 in the emitter, and the interval of a plateatiy(E<Q) <V energy of the Fermi sea hojesas observed via the decline

. in the variance of differential conductance fluctuations at
<V,(E,), where the current remains nearly constant. The_. . 2 o
latter interval lasts until the next impurity levil, is lowered emgher bias voltageg(4G)°). In the present publication, we

enough to contribute to the transport and it is ideal for study-StlJOly the correlation functiok (V), of a random differential

ing the image of the LDOS in the emitting reservbif.since conductance pattern worked out for different bias voltage

any further variation of the current as a functior’1 of biaslntervals. To make this analy.f,ls sound, the differential con-

voltage,l (V) is dominated by the energy dependence of the(rjuctagce of a rgsofnant tuntr)el;pgfdstrulcture h?f ?}eﬁn rr;easm:red

- . . . or a dense grid of magnetic field values, which has largely

tunnellng density of states in the em|ttdn()§v(E). A con- increased the statistical ensemble of data used in the evalu-

venient way to look at such(V) characteristics is to plot the ation of the correlation functioK (AV) of a random pattern

differential conductances(V)=dl/dVedv/dE, in which 5G(V,B)

the image of variation in LDOS is more pronounced. e
In a disordered medium, the energy dependence of the

LDOS studied at a certain point of a sample reveals an ir-

regular fine structur® v»(E)=vy+ Sv(E), which arises K(AV):<5G(V+AV,B)5G(V,B)>B

from quantum interference of elastically scattered ((6G)%)g '
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FIG. 1. Sketch of the resonant tunneling spectroscopy of the
LDOS using an impurity state in a double-barrier structure. Elec- GaAs:Si 4x10'" cm’® 300 nm
trons tunnel from a heavily doped disordered emitter through the
energetically lowest leve$ of the quantum well sandwiched be-

tween the double barriers, so tHaserves as a spectrometer of the
density of states/(E) of the emitter. GaAs:Si 1x10' ¢ cm’®
and has allowed us to compare details of its shape to the
results of a theoretical analysis. The latter effort has enabled
us to notice some geometrical features of the structure used
in this experimentproduced in a particular growth procgss
which would be difficult to detect otherwise.

The material presented in this paper is organized as folstrcture is formed by a second spacer layer of 7 nm un-

lows. In Sec. Il, the experimental setup, parameters, and d%‘oped GaAs and a 300 nm thick layer of GaAs doped with Si
sign of the structures that we used, and the raw da@(®) {5 4.0x 10'” cm 3.

characteristics are discussed. In order to characterize the The parrier structure is highly asymmetric, and the trans-

spectral resolution of the spectrometer, we analyze in Sec. Barency of the thick emitter barrier is much lower than that
the form of(G(V))g averaged over many runs taken at dif- of the collector barrier, which means that the value of the
ferent values of applied magnetic field. A detailed quantitaynneling current is dominated by the low transmission of the
tive analysis of fluctuations and their correlation functions isemitter barrier. Due to the thin spacer layer the nominally
presented in Sec. Ill, in comparison to the results of a theory,ngoped quantum well contains a small number of residual
presented in two Appendixes. The end of Sec. lll is devotegmpyrities. The energetically lowest impurity state will be
to the discussion of the energy dependence of the quasipalged as a local spectrometer of the emitter states.
ticle relaxation rate extracted from this analysis, from the |4 order to limit the number of residual impurities in the
point of view of the Aronov-Altshuler theory of electron- quantum well, pillars with small areas were fabricated from
electron interaction in disordered metéls® Appendix A this heterostructur®® By employing electron-beam lithogra-
completes the text with a qualitative estimation of the vari-phy, evaporation, and lift-off, AuGe/Ni layers were deposited
ance of the differential conductance fluctuatidfis* based  on'the top of the wafer. This metallization served both as an
upon the theory of statistical and correlation properties ofphmic contact and as an etch mask for the following reactive
chaotic wave functions in disordered médid® using an  jon etching(RIE) step. A AuGe/Ni coating was also evapo-
approach similar to the Thouless scaling theféﬂ]he quan-  rated onto the substrate side of the wafer to form the back
titative analysis of the variance and correlation properties ohnmic contact. Free-standing pillars with diameters in the
a pattern qf&G(V), in.cluding the dimensional crossover, is um and subzm range and a typical height of several hun-
presented in Appendix B. dred nm were etched using RIE. Then, large-area Cr/Ag/Au
bond pads could be prepared on top of the pillars by pla-
narizing the pillars with an insulating polyimide layer. The
tunneling current was measured with a dc technique in a
The experiment was performed using an asymmetridilution refrigerator at 20 mK base temperature. For our
double-barrier heterostructure that was grown by molecularanalysis the differential conductan&V) was numerically
beam epitaxy on an”-type GaAs substrate. Directly on top calculated from the measured current values. A typ@@V)
of the substrate the layer sequence for the resonant tunnelingace is shown in Fig. 3. At zero biaS|ies above the Fermi
diode was grown as illustrated in Fig. 2. The growth startedevel in the emitter and is not available for resonant trans-
with a 300 nm thick GaAs layer doped with Si to 4.0 port, resulting iInG=0. At Vs=9.8 mV, the spectrometer
x 10" cm™3. This emitter layer is followed by a very thin crosses the Fermi level and the current jumps abruptly from
spacer layer of 7 nm undoped GaAs. The actual resonarzero to a finite value, resulting in a sharp peak in the deriva-
tunneling structure consists of a 10 nm wide GaAs quantuntive Gecdv/de. For larger bias voltages a reproducible oscil-
well sandwiched between two /dGa, -As barriers of 5 and latory fine structure can be seen, which we attribute as the
8 nm width (top and bottom barrig¢r The collector of the result of LDOS fluctuations in the contact regions. This fine

IANININRNINIINIAIRNSNNNNRN

FIG. 2. Layer structure of the double-barrier heterostructure.

Il. SAMPLES AND EXPERIMENTAL RESULTS
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FIG. 3. Image of LDOS fluctuations: Typical plot of the differ-
ential conductanc& versus bias voltag¥ at B=0 T and a base
temperature off =20 mK.

structure is formed by electrons that tunnel from below the

emitter Fermi level through the lowest discrete s@ta the FIG. 4. Contour plot of the differential conductanceas a

guantum well. Since the emitter barrier is much stronger thar&UInCtlon of bias voltagev (step 7 “V.) ‘"’?nd magnetic fields||
h I barri h | f h . inl step 10 mJ for T=20 mK. The excitation energi on the top
the collector barrier, the value of the current step is mainly; o is converted from the bias voltagesee text.

determined by the tunneling rakg /% through the thick bar-
rier on the emitter side. Due to this large barrier asymmetryE = ae(V—Vs) where the prefacto=0.5 accounts for the
the G(V) curve at voltaged/>9.8 mV represents the en- fact that only part of the voltage drops between the emitter

. . and spectrometér** Therefore, the plot in Fig. 4 covers an
eray dependenc&_a only of the LDO&/de in _the emitter ._energy range of quasiparticle excitations of aboutBD
contact. So the fine structure represents an image of emitter, 4 meV, which is indicated by an alternative scale for the

contact LDOS fluctuations scanned by the impurity-relatechorizontal axis on the upper side of this figure. The ampli-

level in the quantum wefl. tude of G(V) fluctuations decreasd$ine structure is sup-
The quantum interference interpretation of the observegressedl with increasing bias voltage in the range 9.8 mV

fine structure is supported by the observed effect of an ap<V<14.6 mV (interval between two peaksAt the same

changes upon variation of a magnetic field, at the sade structure increases, which is interpreted below to be the re-

sult of the inelastic broadening of quasiparticle states in the

<30 mT. Figure 4 shows a gray-scale image of the differ-g ier Note that although oscillations at larger energy

ential conductance measured as a function of both bias Voltcgjes are also present V)= »(E), their contribution to

age and a magnetic field within the interval of fields G(v) is suppressed due to the differentiation. For a broad
—1 T <B<1 T, where the Landau quantization of statesspectrometer both the amplitude and correlation voltage of
in the emitter is completely suppressed by disorder. This diafluctuations would be the same over the entire range of
gram is symmetric with respect to magnetic field inversion,Ys<V=<Vj. For a narrow spectrometer, as studied in the

as it should be for a two-terminal measurement. The use dfeésent work, inelastic broadening of states in the bulk ex-

magnetic field enables us to get a sound amount of data fOc:reeds the spectrometer width upon increasing the excitation

he followi tical vsis of fi ) energy of a quasihole left in the emitter. Then, this inelastic
the Tollowing statistical analysis of fluctuations. broadening affects the parameter of the fluctuation pattern.

The onset of resonant tunneling through the lowest-lyingyote that the observed fluctuations become sharp and large
impurity stateS appears in Fig. 4 as a black line at a voltageagain after the second impurity level begins to contribute to
of 9.8 mV (parallel to theB axis). The second black line ata the current atV>14.6 mV. This is because tunneling
bias voltage of 14.6 mV appears when the next, higher-lyinghrough the second impurity state involves states close to the
impurity state crosses the Fermi energy in the emitter. FoF€rmi energy that have negligible inelastic broadening. In
voltages ranging from 9.8 mV up to 14.6 mV, the measuredn® following, we shall focus on the tunneling through the
tunneling current results only from tunneling through the owest-lying impurity state, i.e. on the interval of bias volt-
lowest-lying impurity stateS. This state is used as a local ages smaller thal <14.6 mV.

. . In Fig. 5 the differential conductance is shown after aver-
spectrometer to scan the LDOS below the Fermi level in th%ging tﬁe raw dataG(V,B) over the interval of magnetic

emitter. \oltage and energy scales are related Vigijg|q specified above. This averaging increases the contrast

between the main peak corresponding to the spectroreter
155314-3
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E (meV) K(AV)=(8G(V+AV,B)8G(V,B))/(5G?) carries informa-

0.00 0.25 0.50 0.75 tion about the finest resolution of quantum states in the emit-
' ' ' ter. On the one hand, due to the finite spectrometer width,

fine structure in the LDOS at energy scales smaller thas
T =20 mK smeared by the spectrometer, so that in the measurements
reported above it cannot be resolved. On the other hand, the
finest energy scale of LDOS fluctuations is intrinsically lim-
—~ 2r ] ited by inelastic broadening of quasiparticle states in the
—] |— emitter,7 y. As a result, the typical value of bias voltage, at
V. =72V which the differential conductance varies randomly, is deter-
1L | mined by the sum of the above two,

J \ VC=%[F+h7]=EC/a, 3)
ok=?

: : . where the spectrometer width is the same for the entire
0.0 0.5 10 15 interval of energies of the quasihole in the emitfieft be-
V-V (mv) hind by the tunneling procesthat we are able to study using
one impurity state, whereas the inelastic broadenmingE),
is dependent on the excitation energy and varies across the
studied bias voltage interval. The same combination of ener-

crossing the emitter Fermi level aii@(V))g at larger bias getic parameters also determines the variance of the differ-
volta eg where a random contribution frcE;m LD(%S quctua—emial conductance fluctuationséG*), which will be dis-
ges, cHssed in Sec. I B.

tions is strongly suppressed. The fluctuations are suppressée
by a statistical weight ofyN, whereN is the number of
uncorrelatedG(V) traces taken at various magnetic fields.
The plot in Fig. 5 can be used to extract the nominal spec- The experimental determination of the correlation func-
trometer width . The emitter barrier in the device we study tion, K, consists of the evaluation of the variaf@s?)g and

is thicker than the collector barrier, so that the broadening ofhen the autocorrelation function of the measured differential
the resonant level is dominated by electron escape from it tgonductance fluctuations pattern,

the collectorI'=T",+T'|=T",, whereas the value of the cur-

rent step is mainly determined by the tunneling rRié# K(AV)=(5G(V+AV,B)5G(V,B))s/(5G%)s,

through the thick barrier on the emitter side. The averagethy means of averaging over different magnetic field points
(G(V))g characteristics at the threshold can bewithin the interval 0 KB<1 T. Then, the obtained corre-
parametrizet! ~2° by the height of the conductance peak atlation function is additionally averaged over a narrow inter-
the threshold voltagd/s and by its widthV at the half-  val of bias voltage, not more than 2—3 times broader than the

ﬂ G.=33pS

<G>, (uS

FIG. 5. The averaged differential conductai€®B))g of the
device obtained as described in the text.

A. Correlation function of fluctuations

maximum, which is given b width of the autocorrelation function determined after the
first step. This procedure allows improved statistics and it

Vi~TI/(ea). (2)  slightly reduces variations in the form of the correlation

function. Note that the finite amount of data used in this
Below, we usd =36 ueV taken directly from Fig. 3. analysis still leaves space for statistical errors, so that the
evaluated correlation function may be treated seriously only

Il STATISTICAL CHARACTERISTICS OF THE within an interval equal to 3 times its width at the half maxi-

DIFFERENTIAL CONDUCTANCE FLUCTUATION mum. - . o
PATTERN The typical result we get for such a correlation function is

shown in Fig. 6 for two values of bias voltage: one at the

In this section, we analyze correlation properties of thebeginning of the studied interval, &=10.2 mV, and the
measured differential conductance pattern, aiming to extraaither at its end, a=13.8 mV. These correlation functions
from this the value and the form of the energy dependence diave a very different width, which we attribute to an increase
the decay rate for quasiparticles. The relevance of thef inelastic broadening of states of quasiholes in the emitter
correlation function of the fluctuation pattern for such anupon the increase of their excitation energy, such that it be-
analysis arises because the autocorrelation function of flu@omes even larger than the spectrometer wiithT herefore,
tuations reflects the typical scale of their energy dependenda@e comparison of correlation parameterskdfAV) can be
(which is equivalent information to that in the power used for determining directly the value of the inelastic relax-
spectrum of frequencies of oscillationsTo start with, ation rate of quasiparticles in the emitter as a function of
the pattern of6G(V) is random and it is related to the de- their excitation energy.
rivative of the LDOS with respect to energy, where the con- To obtain an absolute value of the inelastic broadening
tribution from features at the finest energy scale is enhancefilom such a comparison, one has to make a certain fit and,
by differentiation. Therefore, the correlation function therefore, to use a certain form of the correlation function

155314-4
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FIG. 7. The correlation function at the beginning of the acces-

FIG. 6. Experimental correlation functions, taken at the begin_sible_voltage range. The solid line is_the expe_rimental correlati_on

ning (solid, V=10.2 mV) and the enddashedV=13.8 mV) of function atV=9_.8 mV and the other lines are fits based upon dif-
the accessible voltage range. ferent assumptions about geometry.

K(AV). Theoretical analysis of the correlation function of ~ The suggestion that the emitting electrode in the studied
differential conductance fluctuations in Ref. 12 has showrptructure has the form of a box, rather than the form of a
that its form and therefore the value of the correlation volt-Wire, which would be a natural assumption based upon the
age extracted from the fit depend on the effective dimensionshape of the lithographically processed material in Fig. 2,
ality of the diffusive emitter, that is, on its geometry. In par- nee_ds an explanation. The point is that the_ emitter s?de of this
ticular, for a quasi-zero-dimension@0D) emitter(diffusive ~ device has been produced by overgrowing, heavily doped

p|||ar) and a quasi-2D film we have calculated GaAs:Si substrate (16 cm 2 of Si) with a 300 nm buffer
layer of GaAs:Si, &4 10 cm™3. It is known that the inter-
1-3(AV/V,)? face between the substrate and the first grown layer is not as
Ko(AV)= — (4) perfect as the interfaces produced during the molecular beam
[1+(AVIV)7] epitaxy (MBE) growth process. It is expected that at the
interface between the substrate and the first layer a higher
1—(AV/IV,)? density of background impurities are incorporated and also
Ka(AV)= m that the dislocation density will be higher than that in the rest
Cc

of the structure. The predominant background impurities will

For a quasi-1D wire and 3D bulk, these are, respectively, be carbon impurities, which act as acceptors in GaAs and
compensate the Si-donor doping. Due to this compensation

(4—2Y-Y?)1+Y this interface could be poorly conducting. Although poor
Ki(AV)= J2v5 : conduction through this interface does not affect the observ-
2Y able resistance value of the device and no other measurement

performed on structures from the same series had enough

_(2=Y)V1+Y) sensitivity to indicate its presence, the LDOS fluctuation
Ka(AV)= \/§Y3 ’ ) measurements appear to be sensitive enough to illuminate its
existence.
Y= 1+ (AVIV,)2. For each given geometrical shape of the emitter this

sample, d_-thick disk with a radiuRR), the effective dimen-
All these correlation functions were obtained in the unitarySionality reflected by the shape of the correlation function in
symmetry class limit for fluctuations. Eqg. (4) also depends on the ratio between the diffusion

In Fig. 7, all four are compared to the experimentally length,

determined correlation function for the smallest bias voltage
interval, i.e., forV=9.8 mV. Theoretical curves shown in | #D
this plot for various models of an emitter can be character- L= T+hy ©®)
ized by the depth of a negative anticorrelation overshoot in
K, which is the most pronounced in the quasi-OD case. Foand geometrical sizeg, andR. The diffusion length in Eq.
each theoretical curve, the fit to the data is made using &) characterizes the volume of a disordered system that is
single parametery/., and the best agreement between theeffectively tested by a coherently diffusing particle within

theory and experimental data is achieved for the quasi-Olhe time scale taken before it either escapes from the emitting
model of the emitter. electrode to the collector via the resonant impufter re-
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FIG. 9. Theoretical form of the correlation functisi{AV) as a
0 function of AV/V, with the resonant impurity at the center of the
disk p/R=0. Long dashed line is numerical result fog/R=1.0,
. 1 . dot-dashed line folL./R=1.5, and short dashed line fdr./R
0.0 0.2 0.4

=2.0. Solid and dotted lines are the analytic results in @yfor
AV (mV) QOD and Q2D geometry. Inset is(AV,0) as a function oAV/V,

) ) ] for L,/R=1.5 and different impurity positions. Solid line R
FIG. 8. The evolution of the correlation function from the be- =0, dotted line isp/R=0.5, and long dashed line j§R=1.0.

ginning (bottom to the end(top) of the accessible voltage range

showing the experimental correlation functi¢eolid) and fits for quasi-0D and quasi-2D form of the correlation function that
the quasi-OD(dotted and quasi-2D modeldashed for five volt-  ghoyld be used for fitting the data in the broader voltage
agesi(a) V=13.8 mV,(b) V=13.0 mV,(c) V=122 mV,(d V  jnterval. One can find indications of such a crossover in the
=114 mV, ande) V=10.6 mv. series of correlation functions shown in Fig. 8.

Traces of crossover behavior in Fig. 8 require one to make
laxes inelastically into states at different energies. When thg detailed theoretical analysis of the intermediate redime
latter length scale is the largedt.>L,R, the correlation ~R; since our final goal is to obtain quantitative information
function of fluctuations has the quasi-OD form. Whengphout the quasiparticle lifetime, as a function of quasiparticle
R>L:>L, the finite radius of a pillar would not matter, and energy in the entire energy interval assessed in the reported
the correlation function would have the quasi-2D form. Simi-measurement. Details of a calculation of correlation func-
larly, L>L.>R would correspond to the quasi-1D result in tions in the crossover regime are presented in Appendix B.
Eqg. (4). Finally, one would have to treat the regime of Here, we only describe the results, in a graphic form. Figure
R,L>L. as the three-dimensional one. 9 shows the change in the shape of the correlation function

The value of the correlation voltage extracted from the fitof differential conductance fluctuations expected for a spec-
of the experimental data in Fig. 7 using the quasi-OD modeltrometer placed in the center of the bottom surface of a round
V=80 uV is very close to the width of the main resonance disk, for various values of the ratio, /R, but for the same
peak in Fig. 5 determined by the intrinsic spectrometemominalV,. This plot shows that the crossover between the
width, Vp=72 pV. Comparison ol with other values of  quasi-0D(dotted bottom lingand quasi-2D forngsolid line)

V. obtained from fits of experiment& (V) using other di-  can be split into two steps. First, the negative valle, {{V)
mensionality assumptions V(=65 uV, 51 uV, and  atV~V, is reducedanticorrelations become weakewhich

33 wV for the Q1D, Q2D, and 3D models, respectively happens without a noticeable change in the width of the cor-
gives an additional argument in favor of the view that werelation function at the half maximurin units of V/V,).

deal here with a quasi-OD emitter. At the same time, theThe following evolution of the form consists of the broaden-
relevant diffusion lengthL. calculated asL.=+D#A/E;.  ing of the main part of the correlation function. This two-step
~D#/T is longer than both the sample diameter and theesvolution suggests that the fit to the central peak of the ex-
width of the buffer layer, which would be consistent with an perimentally determined correlation function using the
assumption that the interface is an obstacle for electron esjuasi-OD formula is a consistent procedure applicable even
cape to the substrate. across some part of the crossover regime. The need for such

Since the length scale. in Eq. (6) shortens, due to faster a simplified procedure in the following analysis has another
inelastic relaxation as the quasiparticle excitation energy infeason. When the crossover takes place, the exact form of
creases, the effective dimensionality of the system may varK(V) becomes dependent on the position of the spectrometer
across the bias voltage interval we study. Since the samplen the surface, that is, its distance to the disk perimeter. This
used here haBR>L, a crossover may take place between theeffect is illustrated in the inset to Fig. 9 using several plots of
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FIG. 10. Inelastic quasiparticle relaxatiofE): Variance of the FIG. 11. Comparison of the correlation energy of LDOS

. : 2 o
differential conductanceG(E)” versus excitation energ. The g, cqyations extracted from the amplituésolid lineg and the cor-
inset shows the increased variance of fluctuations in classically h'grblation functionk (AV) (dashed linesfor different models of qua-
magnetic fieldso 7~1. sidimensionality.

K(AV) calculated for different off-center positions of the dependence varies if one makes different assumptions about
resonant impurity. Plots in Fig. 9 also show that values of thehe effective dimensionalityg:
sum of the physical parametelS;-# vy, obtained following

such a procedure may be overestimated when the crossover 1/2 Q0D
to the quasi-2D limit is more developed. LR

B. Analysis of the variance of differential conductance 3/16

fluctuations ———, Q1D
o : (6G?) 1 vRZ\VADT
Quantitative information about the energy dependence of = (8)

i i iparti i Gf  [1+Ay/T]3 92
inelastic quasiparticle relaxation can also be extracted from r Y 1/16
the bias voltage dependence of the variance of differential DL Q2D
conductance fluctuations. Such a dependence for the sample v
described in this paper is shown in Fig. 10. It is evaluated on
the basis of the pattern of raw data in Fig. 4 after subtracting VI'/AD 3D.
from the data the average conductar@€y), shown in Fig. 32vAD’

5, then averaging the difference over the magnetic field in-

tervalT<B<1 T, Using the measured spectrometer wifitand the known

sample dimension® and L, these equations enable us to
LT obtain _theoretical. estimates .of th_e amplitude Qf the \{ariance
J' dB[G(V,B)—(G(V))g]2,  (7) for a given effective dimensionality. A comparison with the
0T low-E part of the measured variance data plotted in Fig. 10,
where we expecty/(E)~0, shows the best agreement with
and, then smoothing it over the bias voltage interval of 3the QOD theory. In these estimations we used the value of
times V. determined for the corresponding bias voltagethe mean free pathl=70 nm, assigned to the nominal
range in the preceding section. The result is presented in thdoping level of the buffer layer. This value bfs confirmed
form normalized by the height of the main conductanceby the tendency of the variancesG(B)?) to follow a
peak,Gr, in order to exclude from this analysis the param-[1+ (w.7)?] dependencé® at classically high magnetic
eters of tunneling barriers, and the bias voltage value is corfields w.7~1 as shown in the inset of Fig. 10.
verted here into the excitation energy of a quasipartielés( The energy dependence of the paramé&igr ' +7y can
the energy of the Fermi sea hole evaluated with respect to thee extracted from Fig. 10 using the formulas in E8), and
Fermi leve). Because of the above-mentioned smoothingit is plotted in Fig. 11 for the four different effective dimen-
procedure, we cannot start the plot in Fig. 10 from exactlysionalities(upper, solid lines Also plotted in Fig. 11 is the
E=0. energy dependence of the paramégr oV, obtained from
The decrease of the amplitude of differential conductancehe analysis of the correlation functiglower, dashed lings
fluctuations upon the increase of excitation energy of quasiThe values of; obtained along two different roots have to
particles is attributed to a faster inelastic relaxation of thecoincide for an appropriate dimensionality assumption, and
latter, which can be used to study the dependep(Eg). they agree only when analysis is based upon the quasi-0D
Similar to the correlation function, the exact form of such aemitter model.

G 1
valg —1—T
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0.10 ration e~E. The latter are formed at the length scale
L.~+VhD/e, which has to be compared to the system
size: the pillar radiusR, and the width,L. In particular, if

L.<L<R, the e-e interaction can be treated as in the
three-dimensional bulk of a disordered conductor. This
condition can be expressed more rigorously as

2 005 E>m?hD/L? w?4D/R?, which states that the quasiparticle
Fg excitation energy has to be larger than the Thouless energy
= related to diffusive motion across the pillar. Since the ex-

tracted valuesy(E) sufficiently exceed experimental uncer-
tainty only for quasiparticle excitation energieg&
>0.5 meV (which has to be compared ter?4AD/L?
~0.4 meV), their quantitative comparison to the calculation
of y(E) in the 3D limit seems to be consistent. At the same
E (meV) time, the entire interval of energies analyzed in Fig. 12 be-
longs to a clearly diffusive regimé&<#r~4 meV. Note
FIG. 12. Determination of the quasiparticle relaxation rate fromthat of all this analysis is extended only over the low-
analysis of correlatior{dashed ling and fluctuation datddotted  magnetic-field range, where the Landau quantization of emit-
line). The solid line is a fit to the theoretically expected inelastic ter states does not play any role.
particle relaxation rate/(E); see text for details.

0.00

S . . . . IV. SUMMARY
C. Quasiparticle inelastic relaxation rate in a disordered

conductor We study resonant tunneling through a discrete localized

On the basis of the material presented above, we concludgVe! in @ GaAs/A|_,GaAs double-barrier heterostructure.
that the use of the quasi-OD assumption for the analysis of € differential conductance —exhibits a temperature-
fluctuations is fully justified and can be exploited for ana|yz_|nsen3|t|ve flne structure thgt is attributed to fluctu_atlons in
ing the energy dependence of the inelastic relaxation rate ¢i€ local density of states in the doped GaAs emitter. The
quasiparticles,y(E). The latter can be obtained from the observed fine structure is analyzed in terms of the variance of

data shown in Fig. 11 by subtracting the original Spectrom_the fluctuations in the differential conductance and in terms

eter width. The resulting relaxation rate dependence on th@f correlation functions with respect to voltage. From ana-
excitation energy is shown in Fig. 12. This plot contains two!YZiNd the shape of the correlation function we conclude that
sets of data taken from the analysis of correlation functiondN€ effective dimensionality of the emitter is zero and is
and the variance, and the comparison to the rate values cdi@used by the disordered interface between the GaAs sub-
culated using Altshuler-Aronov theory. The discrepancyStrate and the doped buffer layer. In_th|s experiment the e!ec-
between data worked out in two different ways indicatet’ons tunnel from below the Fermi energy in the heavily

the arrow bars one would have to assign to the presentgdPPed emitter contact through the discrete localized level,
analysis. leaving behind a quasihole in the emitter. By quantitatively

The theoretical curve shown in Fig. 12 is a fit to the analyzing the width of the measured correlation functions
relaxation rate as derived by Sivan, Imry and Arofdv. and the measured variance we are able to extract the energy
using Er=30 meV for the emitter l;uﬁer doped to 46 dependence of the inelastic quasihole relaxation.

x 10t cm™3 with Si,
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The mean free path obtained from this fit liss 93 nm,
which is close to the mean free path expected for this nomi-
nal doping (betweenl=50 nm andl=100 nm) and also
close to the value extracted from the analysis of the increase This appendix presents a qualitative method of estimating
of the variance of fluctuations with magnetic field ( the variance of differential conductance fluctuations and the
=70 nm). The use of the three-dimensional expression foenergy dependence of quasiparticle relaxation. It is con-
the relaxation rate in Eq(9), in contrast to the quasi-OD structed using a scaling picture similar to that of Thoufiéss
model used to describe fluctuations, is justified by the fol-by considering what happens to the states of single electrons
lowing reason. As discussed at the end of Appendix A, then a box when the electrons are able to diffuse into other,
relaxation of a quasiparticle with ener@yis dominated by similar boxes. For clarity we begin by considering three di-
electron-electrond-e) collisions with energy transfer com- mensionsd= 3 although this is not necessary for the follow-
parable toE, and such a rate is determined by correlationsing arguments to hold. In a classical picture of diffusion, a
between chaotic wave functions with a typical energy sepadiffusive path can be viewed as a series of straight line seg-

APPENDIX A:
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ments of typical length equal to the elastic mean free hath to energyl’, L~ VhD/T'. In general, however, the system is

wherel=ve7, 7 is the elastic time, andg is the Fermi larger thanL; and it is necessary to know how the summa-

velocity. The classical diffusion coefficient i§=v,2:7/d tion above behaves at larger scalgsLy. Consider, for

and the typical time required to diffuse a lengthis  example, a system of scale=2L. Applying the scaling

(&) =&%D. procedure above we may write the approximate eigenstates
Consider eight cubes of length that are separated by at larger scales using EA1), giving

barriers such that no particles may move between the cubes.

We imagine that it is possible to diagonalize the Hamilto- W(rg:Eg)~I"1 2 |z//§.:2"r(r )2
nians of the separate cubes and we denote the eigenstates as 0r=s |E—“Eg<r ¢ 0
#%.(r) wherea specifies the cube aridspecifies the state.

These states are called “mother states” of the generafion ~1~—12 2 |a5i“|2|¢L.F(r0)|2
and they have a mean level spaciddé) where A(€) noa ol

=1/(v¢"). The states are normalized so thayé,(r)|?dr
=1. The Hamiltonian of the total system, consisting of eight %r—12 |¢L.F(ro)
cubes of size& with barriers between them, is also diagonal. a

When the barriers between the cubes are removed, P&here in the last step we used the normalization condition

ticles mzyﬁdiffuselbetwegn them.f\szitatedhabove, the tyIOiCadiven in Eq.(A2). This result shows that the summation over
time to diffuse a lengt is 7p(£) = £°/D. The energy cor- 4,0 energy interval’ will not vary when the spectrum is

responding fo this time is called the Thouless end®g¥)  mogified into its final form at the total system sizebut it
~hD/¢&-. Diffusion between cubes produces a finite mixing il depend on the spectrum at length schle. This is be-

of states from different I_-|a_mi|tonians so that the Hamilt_onianCause once the scale>L, then the corresponding energy
of the new systentconsisting of the eight smaller cubes E(¢&)<I' and information about correlations that is carried
%y the mother states will remain in the energy inteiaho
Xhatter how larget becomes. Now we describe the applica-
tion of the scaling picture above to the differential
conductancé?® The current in the plateau regimie,is de-
termined by a sum of local densities of the wave functions

2, (A4)

E(¢£) of the main diagonal and has elements that are appro
mately equal to zero elsewhere.

An approximation is used to diagonalize the new Hamil-
tonian. An area of widtle(¢) is centered on the middle of

the Ham?lton_ian and a_unitary transformationis Qppli_ed to | (1) |2 with energy,E, taken in an energy interval around

d|agpnallze_|t, neglecting the rest of the Hamlltonlan. A'.O'the energyEy, 1% v~T~ 3| ye(r)|2. The number of states

proximate eigenstates of the new system are linear comblnz?ﬁ a sample of volumé 9 within the energy interval® is

tions of a finite number of mother states of the generagion N(T',L)~v,I'LY, wherew, is the mean density of states per
’ ~Vo ’ 0

unit volume, per unit energy. The variance of the differential

YE(~ 2 allyl(r), (A1)  conductance({SsG?), is given by a typical fluctuation in the
al density of state$v divided by the typical energy interval.

As described above, a summation over the energy intétval
depends on the spectrum at length sdglewith number of
statesN(T",L).*28 Sinceye(r) from a single state is a ran-
dom variable with mainly Gaussian statistics in the metallic
regimé&? and the variance(8G?), is given by a sum of the
individual variances, we have

wherea?! are coefficients with indiceai that refer to the
original cubes of scalé and indexn of the new states in the
cube B of scale Z. The new approximate eigenstates are
normalized so that

> lafr)2=2 [af?=1, (A2)
" « NI, Lp){| ge(r)|?)?

(6G%)~
rava

where we used the property'U =1 (only one value of3 is
considered Correlations between local densities remain im- . ) . ]
portant because at each level in the scaling procedure there‘@eﬂz the typical density of a single state (ise(r)|?)
only a finite basis involved in the construction of new states ™~ 1/Lt.

Consider an experimental observation of the local density In the estimation abov&' is the smallest voltage step
of states at position,. Formally the local density of states that is given by the spectrometer widty-~I'/e. An addi-
may be expressed in terms of a summation of states. Whelipnal level broadeningfi y, takes into account relaxation
observing through a spectrometer of energy wiliththen  processes in the bulk of the emitter and results in a total level
this may be written as a sum of states with enefgyvithin ~ broadenind’(1+7%y/I"). Counting powers of" in the esti-

I' of the spectrometer enerdys, mation of<562> at the end of the preceding paragraph leads
to a factor of (17 y/T)%¥2~3 in the variance. However, we
_ 1 ¢ 5 should stress that the level broadeniing does not influence
v(ro;Eg)=T \Eifgs\sf [Wai(ro)l* é<Lr. (A3) the average value of the current in the plateau regime,
The approximate eigenstaté§;(r,) are those in a system of (1)~ N(T,Lp){|ge(r)]?)
size&, whereé<L andLy is the length scale corresponding r '

155314-9
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or the height of the main differential peak, which is given by
the mean current divided by the width of the peak,

G NN(F:LF)<|¢E(V)|2>
r I'Vp '

PHYSICAL REVIEW B 64 155314
E2
YO~ e one

Now we consider what occurs when the hypercubes are
scaled up to the total system sike For small energies:

Thus the variance is parametrically reduced as compared ta E(L)=Ey,, the system is in the zero-dimensional limit

G: by a factor IN(T,Lp), where N(T',L;)~g(Lry)
~pD¥211-92 \When the dimensiod refers to the effective

whereby the system size is always less than the length scale
associated with the energil,e, where Lg~hD/E. The

dimensionality of the system as determined by the volumebove estimation holds for all scales up to the system size so

over which mesoscopic fluctuations occur, embedded in
nominally three-dimensional space, then the fadtor’,L )

is replaced byN(I",L-)L379. In this case the variance may
be written as

1 G2
VDdlzl-wldeZLSfd (1+ i ,y/r)Sfdlz'

(6G%)~

It is also possible to explain the energy dependence of th
inelastic scattering rate in terms of the above scaling pictur
The rate is determined by a collision between four particl
involving transferred energw. There are two initial par-
ticles with energie€>0 ande’ <0 and two final particles
with energiesE—w>0 and €' + @>0. The inelastic rate
may be estimated using Fermi's golden rtfig!~33

IM(E,€',0)|?
A(§)

where M(E, €', w) is the matrix element for the collision.
For a short-ranged interaction the matrix elements are give
by a spatial integration of a product of four single-particle
wave functiond!*2

> X

<w<E _,<e'<0

()~
0

ME.€' @) [ a .
S| a0 e (e

The normalized wave functions in a disordered system e
hibit random spatial oscillations, each typically contributing
| 4|2~ ¢ 9. After disorder and spatial averaging the product
of four wave functions is roughly

EIN(E(£),9)

In the limit N(E(&),£)— <, there is an infinite basis involved

that the inelastic rate &% y~E?/[g?(L)A(L)], where
g(L)~N(Eq,,L). For our case of interest, however, we sum
over states up to energies greater than the Thouless energy
Eq, of the total systemE>E(L)=E+,. When the system
size reachek ¢, the energy scalk contains all the informa-

tion about correlations between the states. As for the calcu-
lation of ( 5G?) at the length scaler, further scaling does

not change the evaluation of the relaxation rate. The summa-
tion over the energy intervadt will not vary when the spec-
frum is modified into its final form at the total system size

Sut it will depend on the spectrum at length schle with
©Shumber of stated(E,Lg). We replacet in the above esti-

mation withLg, giving

E2 E3/2

NYE,LpA(Lg EZR?

¥(E)
in agreement with the prediction of Altshuler and Arortov.

n APPENDIX B:

This appendix describes a numerical calculation of the
correlation function in a disk of width and radiusR where
L<R. The crossover regime between the quasi-QB3<R
<L.) and quasi-2D <L .<R) limits is studied. Using
standard diagrammatic perturbation theory techniques, it is
possible to express the correlation function in terms of dif-

*fusion propagators in the digk SinceL <L, the zero mode

dominates the diffusion propagator in the direction parallel to
the current flow, across the width of the disk, but it is nec-
essary to sum all harmonics of diffusion perpendicular to the
current flow, in the plane of the disk. Adopting circular cy-
lindrical coordinates =(p,®,z), we consider the resonant
impurity to be positioned at one side of the disk0 and at
an arbitrary radius & p<R from the center of the disk.

The numerical procedure outlined here is necessary only

in the construction of new states at each level of the scalingn the crossover regime since the exact geometry of the emit-
process, leading to an absence of correlations between difer is not relevant in the limiting cases: in the quasi-2D limit

ferent eigenvectors. For finitd(E(£), €), however, there is a

a diffusing electron typically does not reach the boundary of

finite basis and correlations exist. Integration over the hyperthe disk and it is thus possible to integrate over all harmonics

cube provides an additional factor ¢f so that a typical
value of the matrix element is

A(é)

M~NE®.9

of the diffusion propagator in the plane of the disk, whereas
in the quasi-0D limit the zero mode in the plane of the disk
is not damped very effectively and it dominates, enabling
one to neglect all higher harmonics. These approximations
produce the analytic results given in the main text and in
both cases the position of the resonant impupitys irrel-

Since each summation with respect to energy contributegvant. However, the position of the resonant impurity is cru-

roughly E/A(£), we find

cial in the crossover regime because it is necessary to sum

155314-10
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FIG. 13. Theoretical form of the varian¢éG?) as a function of

fy/T" with the resonant impurity in the center of the digkR FIG. 14. Theoretical form of the correlation functist(AV,0)
=0. From the top, the long dashed line is the numerical result foms a function ofA V/V with the resonant impurity off center of the
Ly /R=1.0, dot-dashed line fot/R=1.5, and short dashed line disk atp/R=0.5. The long dashed line is the numerical result for
for L /R=2.0. The solid lines show asymptotics at large/T L./R=1.0, dot-dashed line fok./R=1.5, and short dashed line
given by the Q2D analytic result, E(B), and the dotted line is the for L./R=2.0. Solid and dotted lines are the Q2D and QOD ana-
QOD analytic result, Eq(8). All the curves are normalized by the Iytic results from Eq(4). Inset isK (AV,0) as a function oA V/V,

QOD analytic result, Eq(8). Inset is{5G?) as a function ofi y/T with the resonant impurity gi/R= 1.0 with line styles the same as
for L /R=1.5 and different impurity positions. Solid line j[gR the main part.
=0, dotted line isp/R=0.5, and long dashed line [gR=1.0.

It describes diffusion in the disk and is therefore restricted by
over many harmonics that are influenced by the exact geonthe tunneling barrier az=0 and an insulating boundary at
etry of the emitter. the cylinder surface=R. The poorly conducting interface

The correlation function of differential conductances canbetween the emitter and substrate is also modeled as a tun-
be obtained from the disordered averaged current-curremteling barrier atz=L. These boundary conditions are ex-
correlation functiof® (81(V) 81 (V")) by taking the second pressed as
derivative with respect td = ae(V—-V'),

3,P|,=0=0, &pP|p:R=0, 3,P|,= =0. (B3)

) ) &2 ) The correlation function is found by solving the diffusion
(6G(V)dG(V'))=—(ae) Ew'(v)&(v ))- equation, Eq(B2), in the presence of the boundary condi-
tions, Eqg.(B3). The angle¢ is set to zero without loss of
By expressing the current in terms of Green’s functions usin@€nerality and we find
the single-particle Breit-Wigner resonance conductance 2
formula?’~2°8the correlation function takes the fottn 1 Im(@nm/R)

Polrr) mR2L mianm (1—m? a2 ) 32(anm)
(8G(V)6G(V"))
1
:_1@)2 ST [ QolPelr ) Pctrr) D Rt y—iw) (54
B\ 2 dAZ) v (ho—A)2+T?2 , ,
wherem=0,+1,=2,... andJ, is a Bessel function of the

(B1) first kind of orderm. For a givenm, the numbersx,,, are

i i solutions of the boundary condition at the cylinder surface
In the absence of time-reversal symmetry, the vananc%:R

changes only by the standard Dyson’s factor g8, Where

B=1 for the orthogonal ensembi& the presence of impu- ame(anmp/RHp:R:O-
rity scattering only and 8=2 for the unitary ensemblén )

the presence of a finite magnetic field or weak scattering by’hich may be expressed as

magnetic impurities that breaks time-reversal invariance md (@)= and ()
The diffusion propagator in the disk,(r,r), satisfies the m{¥nm) = Fnmm+ 2{ Enm)

following equation We solve this boundary condition numerically in order to

calculate the propagator, giving the variance and the correla-
[-DV2+y—iw]P(r,r")=8(r—r"). (B2) tion function for arbitraryl ./R and O<p<R.
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In the main text Fig. 9 shows the correlation function for at L.~R. To analyze the effect of the position of the impu-
differentL./R andp/R=0 (main parj and for different im-  rity we choose a particular value &f-/R. The inset of Fig.
purity positionsp/R (inse). We present here for complete- 13 is(5G?) for L-/R=1.5 and for different impurity posi-
ness some further numerical results. Figure 13 shows thiéons. When the impurity position is off-center the variance
calculated variancé5G?) as a function ofhy/T" with the  has a similar qualitative form as for the impurity on the cyl-
resonant impurity at the center of the diskR=0 and dif- inder axis, but the fluctuations appear to be generally
ferent values ofL/R. The short dashed line is the QOD larger.
analytic result, Eq(8), whereas the solid lines show asymp-  Figure 14 showK(AV,0) as a function ofAV/V. and
totics at largeZiy/I" given by the Q2D analytic result, different values ofL./R for p/R=0.5 (main pari and p/R
Eqg. (8). As expected, the numerical plots show behavior=1.0 (inse). The crossover appears to occur more slowly
similar to the QOD analytic form fokL.>R (small #y/T") (over a larger range df /R) when the impurity position is
and similar to Q2D fol .<R (largef y/I") with a crossover off-center.
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