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Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures
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Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the
local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of
correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is
developed to relate the observed fluctuations to the statistics of single-particle wave functions. In a quantitative
theory correlation functions are calculated. By comparing the experimental and theoretical correlation func-
tions, the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on
energy is extracted.
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I. INTRODUCTION

The observation of impurity-assisted tunneling in vertic
transport experiments on double-barrier semicondu
heterostructures1–5 led to the possibility of using the resona
impurity level as a local probe of electronic states of el
trodes prepared from heavily doped degenerate semicon
tors. A number of experiments in strongly asymmet
double-barrier structures have measured directly the lo
density of states~LDOS! of an electrode as a function o
excitation energyE from the Fermi level,5–10 those with the
highest spectral resolution reporting features including
Zeeman splitting of single-particle levels in a disorder
emitter.9

The idea of such experiments is illustrated by the ske
in Fig. 1. Electrons tunnel from a heavily doped disorde
emitter through the energetically lowest level of the quant
well sandwiched between the double barriers. This energ
cally lowest level of the quantum well serves as the sp
trometerS. At zero bias, the energy of this impurity leve
ES , does not coincide with the chemical potentialm in the
emitter. It comes to resonance only after the bias volt
reaches a threshold valueVS(ES). Typical current-voltage
I (V) characteristics of such a device can be divided i
three intervals:2–5,11one interval below the threshold, whe
I'0; the threshold regimeV'VS(ES), where I (V) under-
goes a jump when the resonant level crosses the Fermi
m in the emitter, and the interval of a plateau,VS(ES),V
,V1(E1), where the current remains nearly constant. T
latter interval lasts until the next impurity levelE1 is lowered
enough to contribute to the transport and it is ideal for stu
ing the image of the LDOS in the emitting reservoir,5,12 since
any further variation of the current as a function of bi
voltage,I (V) is dominated by the energy dependence of
tunneling density of states in the emitter,I (V)}n(E). A con-
venient way to look at suchI (V) characteristics is to plot the
differential conductanceG(V)5dI/dV}dn/dE, in which
the image of variation in LDOS is more pronounced.

In a disordered medium, the energy dependence of
LDOS studied at a certain point of a sample reveals an
regular fine structure,13 n(E)5n01dn(E), which arises
from quantum interference of elastically scatter
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l
r

-
c-

al

e

h
d

ti-
-

e

o

el

e

-

e

e
r-

quasiparticles14 diffusing coherently within a length scale re
lated to their lifetime at a particular energy. Since t
Aharonov-Bohm phase accumulated by a diffusing parti
in a magnetic field changes the interference pattern, su
fine structure,dn(E), depends randomly on a magnetic fie
B. In tunneling experiments, the interfering quasiparticle
in fact, a ‘‘hole’’ in the Fermi sea left behind by the tunnelin
of an electron out of the emitter withE,m. Being in a
nonequilibrium state, such a hole ‘‘floats up’’ towards th
Fermi level, due to inelastic collisions between electrons,
that it can be characterized by a finite lifetime equivalent
a broadening of emitter states.11 The broadening of emitte
states suppresses the finest features in the LDOS fluctuat
and, therefore, it strongly affects the amplitude and corre
tion parameters of fluctuations of the differenti
conductance12 of a given resonant tunneling device,dG(V)
5G(V)2^G&. A particularly convenient situation to stud
fluctuations is realized in devices where the mean value
the density of states in the emitter and also the transmis
through the barriers varies much slower than fine fluctuati
in LDOS, so that within the narrow energy interval below t
Fermi energy of the emitter̂G& is negligible anddG(V)
'G(V).

Recently, we reported10 an experiment where the speedin
up of the quasiparticle relaxation upon the increase of
energetic distance to the Fermi level~equal to the excitation
energy of the Fermi sea holes! was observed via the declin
in the variance of differential conductance fluctuations
higher bias voltages,^(dG)2&. In the present publication, we
study the correlation function,K(V), of a random differential
conductance pattern worked out for different bias volta
intervals. To make this analysis sound, the differential c
ductance of a resonant tunneling structure has been meas
for a dense grid of magnetic field values, which has larg
increased the statistical ensemble of data used in the ev
ation of the correlation functionK(DV) of a random pattern
dG(V,B),

K~DV!5
^dG~V1DV,B!dG~V,B!&B

^~dG!2&B
, ~1!
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and has allowed us to compare details of its shape to
results of a theoretical analysis. The latter effort has enab
us to notice some geometrical features of the structure u
in this experiment~produced in a particular growth process!,
which would be difficult to detect otherwise.

The material presented in this paper is organized as
lows. In Sec. II, the experimental setup, parameters, and
sign of the structures that we used, and the raw data ofG(V)
characteristics are discussed. In order to characterize
spectral resolution of the spectrometer, we analyze in Se
the form of^G(V)&B averaged over many runs taken at d
ferent values of applied magnetic field. A detailed quant
tive analysis of fluctuations and their correlation functions
presented in Sec. III, in comparison to the results of a the
presented in two Appendixes. The end of Sec. III is devo
to the discussion of the energy dependence of the quas
ticle relaxation rate extracted from this analysis, from t
point of view of the Aronov-Altshuler theory of electron
electron interaction in disordered metals.15,16 Appendix A
completes the text with a qualitative estimation of the va
ance of the differential conductance fluctuations17–21 based
upon the theory of statistical and correlation properties
chaotic wave functions in disordered media22–24 using an
approach similar to the Thouless scaling theory.25 The quan-
titative analysis of the variance and correlation properties
a pattern ofdG(V), including the dimensional crossover,
presented in Appendix B.

II. SAMPLES AND EXPERIMENTAL RESULTS

The experiment was performed using an asymme
double-barrier heterostructure that was grown by molecu
beam epitaxy on ann1-type GaAs substrate. Directly on to
of the substrate the layer sequence for the resonant tunn
diode was grown as illustrated in Fig. 2. The growth star
with a 300 nm thick GaAs layer doped with Si to 4
31017 cm23. This emitter layer is followed by a very thin
spacer layer of 7 nm undoped GaAs. The actual reson
tunneling structure consists of a 10 nm wide GaAs quan
well sandwiched between two Al0.3Ga0.7As barriers of 5 and
8 nm width ~top and bottom barrier!. The collector of the

FIG. 1. Sketch of the resonant tunneling spectroscopy of
LDOS using an impurity state in a double-barrier structure. El
trons tunnel from a heavily doped disordered emitter through
energetically lowest levelS of the quantum well sandwiched be
tween the double barriers, so thatS serves as a spectrometer of th
density of statesn(E) of the emitter.
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structure is formed by a second spacer layer of 7 nm
doped GaAs and a 300 nm thick layer of GaAs doped with
to 4.031017 cm23.

The barrier structure is highly asymmetric, and the tra
parency of the thick emitter barrier is much lower than th
of the collector barrier, which means that the value of t
tunneling current is dominated by the low transmission of
emitter barrier. Due to the thin spacer layer the nomina
undoped quantum well contains a small number of resid
impurities. The energetically lowest impurity state will b
used as a local spectrometer of the emitter states.

In order to limit the number of residual impurities in th
quantum well, pillars with small areas were fabricated fro
this heterostructure.26 By employing electron-beam lithogra
phy, evaporation, and lift-off, AuGe/Ni layers were deposit
on the top of the wafer. This metallization served both as
Ohmic contact and as an etch mask for the following reac
ion etching~RIE! step. A AuGe/Ni coating was also evapo
rated onto the substrate side of the wafer to form the b
Ohmic contact. Free-standing pillars with diameters in
mm and sub-mm range and a typical height of several hu
dred nm were etched using RIE. Then, large-area Cr/Ag
bond pads could be prepared on top of the pillars by p
narizing the pillars with an insulating polyimide layer. Th
tunneling current was measured with a dc technique i
dilution refrigerator at 20 mK base temperature. For o
analysis the differential conductanceG(V) was numerically
calculated from the measured current values. A typicalG(V)
trace is shown in Fig. 3. At zero bias,S lies above the Ferm
level in the emitter and is not available for resonant tra
port, resulting inG50. At VS59.8 mV, the spectromete
crosses the Fermi level and the current jumps abruptly fr
zero to a finite value, resulting in a sharp peak in the deri
tive G}dn/de. For larger bias voltages a reproducible osc
latory fine structure can be seen, which we attribute as
result of LDOS fluctuations in the contact regions. This fi

e
-
e

FIG. 2. Layer structure of the double-barrier heterostructure
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CORRELATION-FUNCTION SPECTROSCOPY OF . . . PHYSICAL REVIEW B64 155314
structure is formed by electrons that tunnel from below
emitter Fermi level through the lowest discrete stateS in the
quantum well. Since the emitter barrier is much stronger t
the collector barrier, the value of the current step is mai
determined by the tunneling rateG l /\ through the thick bar-
rier on the emitter side. Due to this large barrier asymme
the G(V) curve at voltagesV.9.8 mV represents the en
ergy dependence only of the LDOSdn/de in the emitter
contact. So the fine structure represents an image of em
contact LDOS fluctuations scanned by the impurity-rela
level in the quantum well.5

The quantum interference interpretation of the obser
fine structure is supported by the observed effect of an
plied magnetic field. The oscillatory form ofG(V) randomly
changes upon variation of a magnetic field, at the scaleDB
,30 mT. Figure 4 shows a gray-scale image of the diff
ential conductance measured as a function of both bias v
age and a magnetic field within the interval of fiel
21 T ,B,1 T, where the Landau quantization of stat
in the emitter is completely suppressed by disorder. This
gram is symmetric with respect to magnetic field inversio
as it should be for a two-terminal measurement. The us
magnetic field enables us to get a sound amount of data
the following statistical analysis of fluctuations.

The onset of resonant tunneling through the lowest-ly
impurity stateSappears in Fig. 4 as a black line at a volta
of 9.8 mV ~parallel to theB axis!. The second black line at
bias voltage of 14.6 mV appears when the next, higher-ly
impurity state crosses the Fermi energy in the emitter.
voltages ranging from 9.8 mV up to 14.6 mV, the measu
tunneling current results only from tunneling through t
lowest-lying impurity stateS. This state is used as a loc
spectrometer to scan the LDOS below the Fermi level in
emitter. Voltage and energy scales are related

FIG. 3. Image of LDOS fluctuations: Typical plot of the diffe
ential conductanceG versus bias voltageV at B50 T and a base
temperature ofT520 mK.
ter
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E5ae(V2VS) where the prefactora50.5 accounts for the
fact that only part of the voltage drops between the emi
and spectrometer.1,2,4 Therefore, the plot in Fig. 4 covers a
energy range of quasiparticle excitations of about 0<E
<2.4 meV, which is indicated by an alternative scale for t
horizontal axis on the upper side of this figure. The amp
tude of G(V) fluctuations decreases~fine structure is sup-
pressed! with increasing bias voltage in the range 9.8 m
,V,14.6 mV ~interval between two peaks!. At the same
time, the characteristic voltage scale dominating the fi
structure increases, which is interpreted below to be the
sult of the inelastic broadening of quasiparticle states in
emitter. Note that although oscillations at larger ene
scales are also present inI (V)}n(E), their contribution to
G(V) is suppressed due to the differentiation. For a bro
spectrometer both the amplitude and correlation voltage
fluctuations would be the same over the entire range
VS<V<V1. For a narrow spectrometer, as studied in t
present work, inelastic broadening of states in the bulk
ceeds the spectrometer width upon increasing the excita
energy of a quasihole left in the emitter. Then, this inelas
broadening affects the parameter of the fluctuation patt
Note that the observed fluctuations become sharp and l
again after the second impurity level begins to contribute
the current atV.14.6 mV. This is because tunnelin
through the second impurity state involves states close to
Fermi energy that have negligible inelastic broadening.
the following, we shall focus on the tunneling through t
lowest-lying impurity state, i.e. on the interval of bias vo
ages smaller thanV,14.6 mV.

In Fig. 5 the differential conductance is shown after av
aging the raw dataG(V,B) over the interval of magnetic
field specified above. This averaging increases the con
between the main peak corresponding to the spectromeS

FIG. 4. Contour plot of the differential conductanceG as a
function of bias voltageV ~step 7 mV) and magnetic fieldBi I
~step 10 mT! for T520 mK. The excitation energyE on the top
scale is converted from the bias voltageV; see text.
4-3
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crossing the emitter Fermi level and^G(V)&B at larger bias
voltages, where a random contribution from LDOS fluctu
tions is strongly suppressed. The fluctuations are suppre
by a statistical weight ofAN, where N is the number of
uncorrelatedG(V) traces taken at various magnetic field
The plot in Fig. 5 can be used to extract the nominal sp
trometer width,G. The emitter barrier in the device we stud
is thicker than the collector barrier, so that the broadening
the resonant level is dominated by electron escape from
the collector,G5G r1G l'G r , whereas the value of the cu
rent step is mainly determined by the tunneling rateG l /\
through the thick barrier on the emitter side. The avera
^G(V)&B characteristics at the threshold can
parametrized27–29 by the height of the conductance peak
the threshold voltageVS and by its widthVG at the half-
maximum, which is given by30

VG'G/~ea!. ~2!

Below, we useG536 meV taken directly from Fig. 3.

III. STATISTICAL CHARACTERISTICS OF THE
DIFFERENTIAL CONDUCTANCE FLUCTUATION

PATTERN

In this section, we analyze correlation properties of
measured differential conductance pattern, aiming to ext
from this the value and the form of the energy dependenc
the decay rate for quasiparticles. The relevance of
correlation function of the fluctuation pattern for such
analysis arises because the autocorrelation function of fl
tuations reflects the typical scale of their energy depende
~which is equivalent information to that in the pow
spectrum of frequencies of oscillations!. To start with,
the pattern ofdG(V) is random and it is related to the de
rivative of the LDOS with respect to energy, where the co
tribution from features at the finest energy scale is enhan
by differentiation. Therefore, the correlation functio

FIG. 5. The averaged differential conductance^G(B)&B of the
device obtained as described in the text.
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K(DV)5^dG(V1DV,B)dG(V,B)&/^dG2& carries informa-
tion about the finest resolution of quantum states in the em
ter. On the one hand, due to the finite spectrometer widthG,
fine structure in the LDOS at energy scales smaller thanG is
smeared by the spectrometer, so that in the measurem
reported above it cannot be resolved. On the other hand
finest energy scale of LDOS fluctuations is intrinsically lim
ited by inelastic broadening of quasiparticle states in
emitter,\g. As a result, the typical value of bias voltage,
which the differential conductance varies randomly, is de
mined by the sum of the above two,

Vc5
1

a
@G1\g#5Ec /a, ~3!

where the spectrometer widthG is the same for the entire
interval of energies of the quasihole in the emitter~left be-
hind by the tunneling process! that we are able to study usin
one impurity state, whereas the inelastic broadening,\g(E),
is dependent on the excitation energy and varies across
studied bias voltage interval. The same combination of en
getic parameters also determines the variance of the di
ential conductance fluctuations,^dG2&, which will be dis-
cussed in Sec. II B.

A. Correlation function of fluctuations

The experimental determination of the correlation fun
tion, K, consists of the evaluation of the variance^dG2&B and
then the autocorrelation function of the measured differen
conductance fluctuations pattern,

K~DV!5^dG~V1DV,B!dG~V,B!&B /^dG2&B ,

by means of averaging over different magnetic field poi
within the interval 0 T,B,1 T. Then, the obtained corre
lation function is additionally averaged over a narrow inte
val of bias voltage, not more than 2–3 times broader than
width of the autocorrelation function determined after t
first step. This procedure allows improved statistics and
slightly reduces variations in the form of the correlatio
function. Note that the finite amount of data used in th
analysis still leaves space for statistical errors, so that
evaluated correlation function may be treated seriously o
within an interval equal to 3 times its width at the half max
mum.

The typical result we get for such a correlation function
shown in Fig. 6 for two values of bias voltage: one at t
beginning of the studied interval, atV510.2 mV, and the
other at its end, atV513.8 mV. These correlation function
have a very different width, which we attribute to an increa
of inelastic broadening of states of quasiholes in the emi
upon the increase of their excitation energy, such that it
comes even larger than the spectrometer width,G. Therefore,
the comparison of correlation parameters ofK(DV) can be
used for determining directly the value of the inelastic rela
ation rate of quasiparticles in the emitter as a function
their excitation energy.

To obtain an absolute value of the inelastic broaden
from such a comparison, one has to make a certain fit a
therefore, to use a certain form of the correlation functi
4-4
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CORRELATION-FUNCTION SPECTROSCOPY OF . . . PHYSICAL REVIEW B64 155314
K(DV). Theoretical analysis of the correlation function
differential conductance fluctuations in Ref. 12 has sho
that its form and therefore the value of the correlation vo
age extracted from the fit depend on the effective dimens
ality of the diffusive emitter, that is, on its geometry. In pa
ticular, for a quasi-zero-dimensional~Q0D! emitter~diffusive
pillar! and a quasi-2D film we have calculated

K0~DV!5
123~DV/Vc!

2

@11~DV/Vc!
2#3

, ~4!

K2~DV!5
12~DV/Vc!

2

@11~DV/Vc!
2#2

.

For a quasi-1D wire and 3D bulk, these are, respectively

K1~DV!5
~422Y2Y2!A11Y

A2Y5
,

K3~DV!5
~22Y!A11Y)

A2Y3
, ~5!

Y5A11~DV/Vc!
2.

All these correlation functions were obtained in the unita
symmetry class limit for fluctuations.

In Fig. 7, all four are compared to the experimenta
determined correlation function for the smallest bias volta
interval, i.e., forV59.8 mV. Theoretical curves shown i
this plot for various models of an emitter can be charac
ized by the depth of a negative anticorrelation overshoo
K, which is the most pronounced in the quasi-0D case.
each theoretical curve, the fit to the data is made usin
single parameter,Vc , and the best agreement between
theory and experimental data is achieved for the quasi
model of the emitter.

FIG. 6. Experimental correlation functions, taken at the beg
ning ~solid, V510.2 mV) and the end~dashed,V513.8 mV) of
the accessible voltage range.
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The suggestion that the emitting electrode in the stud
structure has the form of a box, rather than the form o
wire, which would be a natural assumption based upon
shape of the lithographically processed material in Fig.
needs an explanation. The point is that the emitter side of
device has been produced by overgrowing, heavily do
GaAs:Si substrate (1018 cm23 of Si! with a 300 nm buffer
layer of GaAs:Si, 431017 cm23. It is known that the inter-
face between the substrate and the first grown layer is no
perfect as the interfaces produced during the molecular b
epitaxy ~MBE! growth process. It is expected that at th
interface between the substrate and the first layer a hig
density of background impurities are incorporated and a
that the dislocation density will be higher than that in the r
of the structure. The predominant background impurities w
be carbon impurities, which act as acceptors in GaAs
compensate the Si-donor doping. Due to this compensa
this interface could be poorly conducting. Although po
conduction through this interface does not affect the obse
able resistance value of the device and no other measure
performed on structures from the same series had eno
sensitivity to indicate its presence, the LDOS fluctuati
measurements appear to be sensitive enough to illuminat
existence.

For each given geometrical shape of the emitter~for this
sample, aL-thick disk with a radiusR), the effective dimen-
sionality reflected by the shape of the correlation function
Eq. ~4! also depends on the ratio between the diffus
length,

Lc5A \D

G1\g
~6!

and geometrical sizes,L andR. The diffusion length in Eq.
~6! characterizes the volume of a disordered system tha
effectively tested by a coherently diffusing particle with
the time scale taken before it either escapes from the emit
electrode to the collector via the resonant impurityS or re-

-

FIG. 7. The correlation function at the beginning of the acc
sible voltage range. The solid line is the experimental correlat
function atV59.8 mV and the other lines are fits based upon d
ferent assumptions about geometry.
4-5
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laxes inelastically into states at different energies. When
latter length scale is the largest,Lc@L,R, the correlation
function of fluctuations has the quasi-0D form. Wh
R.Lc.L, the finite radius of a pillar would not matter, an
the correlation function would have the quasi-2D form. Sim
larly, L.Lc.R would correspond to the quasi-1D result
Eq. ~4!. Finally, one would have to treat the regime
R,L@Lc as the three-dimensional one.

The value of the correlation voltage extracted from the
of the experimental data in Fig. 7 using the quasi-0D mod
Vc580 mV is very close to the width of the main resonan
peak in Fig. 5 determined by the intrinsic spectrome
width, VG572 mV. Comparison ofVG with other values of
Vc obtained from fits of experimentalK(V) using other di-
mensionality assumptions (Vc565 mV, 51 mV, and
33 mV for the Q1D, Q2D, and 3D models, respectivel!
gives an additional argument in favor of the view that w
deal here with a quasi-0D emitter. At the same time,
relevant diffusion lengthLc calculated asLc5AD\/Ec

'AD\/G is longer than both the sample diameter and
width of the buffer layer, which would be consistent with a
assumption that the interface is an obstacle for electron
cape to the substrate.

Since the length scaleLc in Eq. ~6! shortens, due to faste
inelastic relaxation as the quasiparticle excitation energy
creases, the effective dimensionality of the system may v
across the bias voltage interval we study. Since the sam
used here hasR.L, a crossover may take place between

FIG. 8. The evolution of the correlation function from the b
ginning ~bottom! to the end~top! of the accessible voltage rang
showing the experimental correlation function~solid! and fits for
the quasi-0D~dotted! and quasi-2D model~dashed! for five volt-
ages:~a! V513.8 mV, ~b! V513.0 mV, ~c! V512.2 mV, ~d! V
511.4 mV, and~e! V510.6 mV.
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quasi-0D and quasi-2D form of the correlation function th
should be used for fitting the data in the broader volta
interval. One can find indications of such a crossover in
series of correlation functions shown in Fig. 8.

Traces of crossover behavior in Fig. 8 require one to m
a detailed theoretical analysis of the intermediate regimeLc
'R, since our final goal is to obtain quantitative informatio
about the quasiparticle lifetime, as a function of quasiparti
energy in the entire energy interval assessed in the repo
measurement. Details of a calculation of correlation fun
tions in the crossover regime are presented in Appendix
Here, we only describe the results, in a graphic form. Fig
9 shows the change in the shape of the correlation func
of differential conductance fluctuations expected for a sp
trometer placed in the center of the bottom surface of a ro
disk, for various values of the ratioLc /R, but for the same
nominalVc . This plot shows that the crossover between
quasi-0D~dotted bottom line! and quasi-2D form~solid line!
can be split into two steps. First, the negative valley inK(V)
at V'Vc is reduced~anticorrelations become weaker!, which
happens without a noticeable change in the width of the c
relation function at the half maximum~in units of V/Vc).
The following evolution of the form consists of the broade
ing of the main part of the correlation function. This two-st
evolution suggests that the fit to the central peak of the
perimentally determined correlation function using t
quasi-0D formula is a consistent procedure applicable e
across some part of the crossover regime. The need for
a simplified procedure in the following analysis has anot
reason. When the crossover takes place, the exact form
K(V) becomes dependent on the position of the spectrom
on the surface, that is, its distance to the disk perimeter. T
effect is illustrated in the inset to Fig. 9 using several plots

FIG. 9. Theoretical form of the correlation functionK(DV) as a
function of DV/Vc with the resonant impurity at the center of th
disk r/R50. Long dashed line is numerical result forLc /R51.0,
dot-dashed line forLc /R51.5, and short dashed line forLc /R
52.0. Solid and dotted lines are the analytic results in Eq.~4! for
Q0D and Q2D geometry. Inset isK(DV,0) as a function ofDV/Vc

for Lc /R51.5 and different impurity positions. Solid line isr/R
50, dotted line isr/R50.5, and long dashed line isr/R51.0.
4-6
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K(DV) calculated for different off-center positions of th
resonant impurity. Plots in Fig. 9 also show that values of
sum of the physical parameters,G1\g, obtained following
such a procedure may be overestimated when the cross
to the quasi-2D limit is more developed.

B. Analysis of the variance of differential conductance
fluctuations

Quantitative information about the energy dependence
inelastic quasiparticle relaxation can also be extracted f
the bias voltage dependence of the variance of differen
conductance fluctuations. Such a dependence for the sa
described in this paper is shown in Fig. 10. It is evaluated
the basis of the pattern of raw data in Fig. 4 after subtrac
from the data the average conductance,G(V), shown in Fig.
5, then averaging the difference over the magnetic field
terval T,B,1 T ,

varBG5
1

1 T E
0 T

1 T

dB @G~V,B!2^G~V!&B#2, ~7!

and, then smoothing it over the bias voltage interval o
times Vc determined for the corresponding bias volta
range in the preceding section. The result is presented in
form normalized by the height of the main conductan
peak,GG , in order to exclude from this analysis the para
eters of tunneling barriers, and the bias voltage value is c
verted here into the excitation energy of a quasiparticle (E is
the energy of the Fermi sea hole evaluated with respect to
Fermi level!. Because of the above-mentioned smooth
procedure, we cannot start the plot in Fig. 10 from exac
E50.

The decrease of the amplitude of differential conducta
fluctuations upon the increase of excitation energy of qu
particles is attributed to a faster inelastic relaxation of
latter, which can be used to study the dependenceg(E).
Similar to the correlation function, the exact form of such

FIG. 10. Inelastic quasiparticle relaxationg(E): Variance of the
differential conductancedG(E)2 versus excitation energyE. The
inset shows the increased variance of fluctuations in classically
magnetic fieldsvct;1.
15531
e

ver

of
m
al
ple
n
g

-

3

he
e
-
n-

he
g
y

e
i-
e

dependence varies if one makes different assumptions a
the effective dimensionality,d:

^dG2&

GG
2

5
1

@11\g/G#32d/2
3

¦

1/2

nLR2G
, Q0D

3/16

nR2A\DG
, Q1D

1/16

n\DL
, Q2D

AG/\D

32n\D
, 3D.

~8!

Using the measured spectrometer widthG and the known
sample dimensionsR and L, these equations enable us
obtain theoretical estimates of the amplitude of the varia
for a given effective dimensionality. A comparison with th
low-E part of the measured variance data plotted in Fig.
where we expectg(E);0, shows the best agreement wi
the Q0D theory. In these estimations we used the value
the mean free path,l'70 nm, assigned to the nomina
doping level of the buffer layer. This value ofl is confirmed
by the tendency of the variancêdG(B)2& to follow a
@11(vct)2# dependence12,8 at classically high magnetic
fields vct;1 as shown in the inset of Fig. 10.

The energy dependence of the parameterEc5G1\g can
be extracted from Fig. 10 using the formulas in Eq.~8!, and
it is plotted in Fig. 11 for the four different effective dimen
sionalities~upper, solid lines!. Also plotted in Fig. 11 is the
energy dependence of the parameterEc5aVc obtained from
the analysis of the correlation function~lower, dashed lines!.
The values ofEc obtained along two different roots have
coincide for an appropriate dimensionality assumption, a
they agree only when analysis is based upon the quas
emitter model.

h

FIG. 11. Comparison of the correlation energyEc of LDOS
fluctuations extracted from the amplitude~solid lines! and the cor-
relation functionK(DV) ~dashed lines! for different models of qua-
sidimensionality.
4-7
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C. Quasiparticle inelastic relaxation rate in a disordered
conductor

On the basis of the material presented above, we conc
that the use of the quasi-0D assumption for the analysi
fluctuations is fully justified and can be exploited for analy
ing the energy dependence of the inelastic relaxation rat
quasiparticles,g(E). The latter can be obtained from th
data shown in Fig. 11 by subtracting the original spectro
eter width. The resulting relaxation rate dependence on
excitation energy is shown in Fig. 12. This plot contains t
sets of data taken from the analysis of correlation functi
and the variance, and the comparison to the rate values
culated using Altshuler-Aronov theory. The discrepan
between data worked out in two different ways indica
the arrow bars one would have to assign to the prese
analysis.

The theoretical curve shown in Fig. 12 is a fit to th
relaxation rate as derived by Sivan, Imry and Aronov16

using EF530 meV for the emitter buffer doped to 4.
31017 cm23 with Si,

g5
105A3

16p

\1/2E3/2

t3/2EF
2

. ~9!

The mean free path obtained from this fit isl 593 nm,
which is close to the mean free path expected for this no
nal doping ~betweenl 550 nm andl 5100 nm) and also
close to the value extracted from the analysis of the incre
of the variance of fluctuations with magnetic fieldl
570 nm). The use of the three-dimensional expression
the relaxation rate in Eq.~9!, in contrast to the quasi-0D
model used to describe fluctuations, is justified by the f
lowing reason. As discussed at the end of Appendix A,
relaxation of a quasiparticle with energyE is dominated by
electron-electron (e-e) collisions with energy transfer com
parable toE, and such a rate is determined by correlatio
between chaotic wave functions with a typical energy se

FIG. 12. Determination of the quasiparticle relaxation rate fr
analysis of correlation~dashed line! and fluctuation data~dotted
line!. The solid line is a fit to the theoretically expected inelas
particle relaxation rateg(E); see text for details.
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ration e'E. The latter are formed at the length sca
Le'A\D/e, which has to be compared to the syste
size: the pillar radius,R, and the width,L. In particular, if
Le,L,R, the e-e interaction can be treated as in th
three-dimensional bulk of a disordered conductor. T
condition can be expressed more rigorously
E.p2\D/L2,p2\D/R2, which states that the quasipartic
excitation energy has to be larger than the Thouless en
related to diffusive motion across the pillar. Since the e
tracted valuesg(E) sufficiently exceed experimental unce
tainty only for quasiparticle excitation energiesE
.0.5 meV ~which has to be compared top2\D/L2

'0.4 meV), their quantitative comparison to the calculati
of g(E) in the 3D limit seems to be consistent. At the sam
time, the entire interval of energies analyzed in Fig. 12
longs to a clearly diffusive regime,E,\t'4 meV. Note
that of all this analysis is extended only over the lo
magnetic-field range, where the Landau quantization of em
ter states does not play any role.

IV. SUMMARY

We study resonant tunneling through a discrete locali
level in a GaAs/Al12xGaxAs double-barrier heterostructure
The differential conductance exhibits a temperatu
insensitive fine structure that is attributed to fluctuations
the local density of states in the doped GaAs emitter. T
observed fine structure is analyzed in terms of the varianc
the fluctuations in the differential conductance and in ter
of correlation functions with respect to voltage. From an
lyzing the shape of the correlation function we conclude t
the effective dimensionality of the emitter is zero and
caused by the disordered interface between the GaAs
strate and the doped buffer layer. In this experiment the e
trons tunnel from below the Fermi energy in the heav
doped emitter contact through the discrete localized le
leaving behind a quasihole in the emitter. By quantitative
analyzing the width of the measured correlation functio
and the measured variance we are able to extract the en
dependence of the inelastic quasihole relaxation.
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APPENDIX A:

This appendix presents a qualitative method of estima
the variance of differential conductance fluctuations and
energy dependence of quasiparticle relaxation. It is c
structed using a scaling picture similar to that of Thoules25

by considering what happens to the states of single elect
in a box when the electrons are able to diffuse into oth
similar boxes. For clarity we begin by considering three
mensionsd53 although this is not necessary for the follow
ing arguments to hold. In a classical picture of diffusion
diffusive path can be viewed as a series of straight line s
4-8
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ments of typical length equal to the elastic mean free pal,
where l 5vFt, t is the elastic time, andvF is the Fermi
velocity. The classical diffusion coefficient isD5vF

2t/d
and the typical time required to diffuse a lengthj is
tD(j)5j2/D.

Consider eight cubes of lengthj that are separated b
barriers such that no particles may move between the cu
We imagine that it is possible to diagonalize the Hamil
nians of the separate cubes and we denote the eigensta
ca i

j (r ) wherea specifies the cube andi specifies the state
These states are called ‘‘mother states’’ of the generatioj
and they have a mean level spacingD(j) where D(j)
51/(njd). The states are normalized so that* uca i

j (r )u2dr
51. The Hamiltonian of the total system, consisting of eig
cubes of sizej with barriers between them, is also diagon

When the barriers between the cubes are removed,
ticles may diffuse between them. As stated above, the typ
time to diffuse a lengthj is tD(j)5j2/D. The energy cor-
responding to this time is called the Thouless energyE(j)
'hD/j2. Diffusion between cubes produces a finite mixi
of states from different Hamiltonians so that the Hamilton
of the new system~consisting of the eight smaller cubes! is
not diagonal. Instead it has finite elements within a dista
E(j) of the main diagonal and has elements that are appr
mately equal to zero elsewhere.

An approximation is used to diagonalize the new Ham
tonian. An area of widthE(j) is centered on the middle o
the Hamiltonian and a unitary transformationU is applied to
diagonalize it, neglecting the rest of the Hamiltonian. A
proximate eigenstates of the new system are linear comb
tions of a finite number of mother states of the generationj,

cbn
2j ~r !'(

a i
aa i

bnca i
j ~r !, ~A1!

whereaa i
bn are coefficients with indicesa i that refer to the

original cubes of scalej and indexn of the new states in the
cube b of scale 2j. The new approximate eigenstates a
normalized so that

(
n

uaa i
bnu2[(

a i
uaa i

bnu251, ~A2!

where we used the propertyU†U51 ~only one value ofb is
considered!. Correlations between local densities remain i
portant because at each level in the scaling procedure the
only a finite basis involved in the construction of new stat

Consider an experimental observation of the local den
of states at positionr0. Formally the local density of state
may be expressed in terms of a summation of states. W
observing through a spectrometer of energy widthG, then
this may be written as a sum of states with energyEi within
G of the spectrometer energyES ,

n~r0 ;ES!'G21 (
uEi2ESu<G

uca i
j ~r0!u2; j<LG . ~A3!

The approximate eigenstatesca i
j (r0) are those in a system o

sizej, wherej<LG andLG is the length scale correspondin
15531
es.
-
s as

t
.
ar-
al

e
i-

-

-
a-

-
is

.
ty

en

to energyG, LG'AhD/G. In general, however, the system
larger thanLG and it is necessary to know how the summ
tion above behaves at larger scalesj.LG . Consider, for
example, a system of scalej52LG . Applying the scaling
procedure above we may write the approximate eigenst
at larger scales using Eq.~A1!, giving

n~r0 ;ES!'G21 (
uEi2ESu<G

uca i
j52LG~r0!u2

'G21(
n

(
a i

uaa i
bnu2uca i

LG~r0!u2

'G21(
a i

uca i
LG~r0!u2, ~A4!

where in the last step we used the normalization condit
given in Eq.~A2!. This result shows that the summation ov
the energy intervalG will not vary when the spectrum is
modified into its final form at the total system sizeL, but it
will depend on the spectrum at length scaleLG . This is be-
cause once the scalej.LG , then the corresponding energ
E(j),G and information about correlations that is carri
by the mother states will remain in the energy intervalG no
matter how largej becomes. Now we describe the applic
tion of the scaling picture above to the differenti
conductance.12,8 The current in the plateau regime,I, is de-
termined by a sum of local densities of the wave functio
ucE(r )u2 with energy,E, taken in an energy intervalG around
the energyE0 , I}n;G21(ucE(r )u2. The number of states
in a sample of volumeLd within the energy intervalG is
N(G,L)'n0GLd, wheren0 is the mean density of states p
unit volume, per unit energy. The variance of the different
conductance,̂dG2&, is given by a typical fluctuation in the
density of statesdn divided by the typical energy intervalG.
As described above, a summation over the energy intervaG
depends on the spectrum at length scaleLG with number of
statesN(G,LG).12,8 SincecE(r ) from a single state is a ran
dom variable with mainly Gaussian statistics in the meta
regime22 and the variance,̂dG2&, is given by a sum of the
individual variances, we have

^dG2&;
N~G,LG!^ucE~r !u2&2

G2VG
2

,

where the typical density of a single state is^ucE(r )u2&
;1/LG

d .
In the estimation aboveVG is the smallest voltage ste

that is given by the spectrometer widthVG;G/e. An addi-
tional level broadening,\g, takes into account relaxatio
processes in the bulk of the emitter and results in a total le
broadeningG(11\g/G). Counting powers ofG in the esti-
mation of^dG2& at the end of the preceding paragraph lea
to a factor of (11\g/G)d/223 in the variance. However, we
should stress that the level broadening\g does not influence
the average value of the current in the plateau regime,

^I &;
N~G,LG!^ucE~r !u2&

G
,

4-9
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or the height of the main differential peak, which is given
the mean current divided by the width of the peak,

GG;
N~G,LG!^ucE~r !u2&

GVG
.

Thus the variance is parametrically reduced as compare
GG

2 by a factor 1/N(G,LG), where N(G,LG);g(LG)
;nDd/2G12d/2. When the dimensiond refers to the effective
dimensionality of the system as determined by the volu
over which mesoscopic fluctuations occur, embedded i
nominally three-dimensional space, then the factorN(G,LG)
is replaced byN(G,LG)L32d. In this case the variance ma
be written as

^dG2&;
1

nDd/2G12d/2L32d

GG
2

~11\g/G!32d/2
.

It is also possible to explain the energy dependence of
inelastic scattering rate in terms of the above scaling pict
The rate is determined by a collision between four partic
involving transferred energyv. There are two initial par-
ticles with energiesE.0 ande8,0 and two final particles
with energiesE2v.0 and e81v.0. The inelastic rate
may be estimated using Fermi’s golden rule:16,31–33

g~j!; (
0,v,E

(
2v,e8,0

uM ~E,e8,v!u2

D~j!
,

where M (E,e8,v) is the matrix element for the collision
For a short-ranged interaction the matrix elements are g
by a spatial integration of a product of four single-partic
wave functions31,32

M ~E,e8,v!

D~j!
'jdE ddr ce81v

* ~r !cE2v* ~r !ce8~r !cE~r !.

The normalized wave functions in a disordered system
hibit random spatial oscillations, each typically contributi
ucu2;j2d. After disorder and spatial averaging the produ
of four wave functions is roughly

^c4&;
1

j2dN„E~j!,j…
.

In the limit N„E(j),j…→`, there is an infinite basis involve
in the construction of new states at each level of the sca
process, leading to an absence of correlations between
ferent eigenvectors. For finiteN„E(j),j…, however, there is a
finite basis and correlations exist. Integration over the hyp
cube provides an additional factor ofjd so that a typical
value of the matrix element is

M;
D~j!

N„E~j!,j…
.

Since each summation with respect to energy contribu
roughly E/D(j), we find
15531
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g~j!;
E2

N2
„E~j!,j…D~j!

.

Now we consider what occurs when the hypercubes
scaled up to the total system sizeL. For small energies,E
,E(L)[ETh , the system is in the zero-dimensional lim
whereby the system size is always less than the length s
associated with the energy,LE , where LE'AhD/E. The
above estimation holds for all scales up to the system siz
that the inelastic rate is16,33 g;E2/@g2(L)D(L)#, where
g(L);N(ETh ,L). For our case of interest, however, we su
over states up to energies greater than the Thouless en
ETh of the total system,E.E(L)[ETh . When the system
size reachesLE , the energy scaleE contains all the informa-
tion about correlations between the states. As for the ca
lation of ^dG2& at the length scaleLG , further scaling does
not change the evaluation of the relaxation rate. The sum
tion over the energy intervalE will not vary when the spec-
trum is modified into its final form at the total system sizeL,
but it will depend on the spectrum at length scaleLE with
number of statesN(E,LE). We replacej in the above esti-
mation withLE , giving

g~E!;
E2

N2~E,LE!D~LE!
;

E3/2

EF
2t3/2

,

in agreement with the prediction of Altshuler and Aronov.15

APPENDIX B:

This appendix describes a numerical calculation of
correlation function in a disk of widthL and radiusR where
L!R. The crossover regime between the quasi-0D (L!R
!Lc) and quasi-2D (L!Lc!R) limits is studied. Using
standard diagrammatic perturbation theory techniques,
possible to express the correlation function in terms of d
fusion propagators in the disk.12 SinceL!Lc , the zero mode
dominates the diffusion propagator in the direction paralle
the current flow, across the width of the disk, but it is ne
essary to sum all harmonics of diffusion perpendicular to
current flow, in the plane of the disk. Adopting circular c
lindrical coordinatesr5(r,f,z), we consider the resonan
impurity to be positioned at one side of the diskz50 and at
an arbitrary radius 0<r<R from the center of the disk.

The numerical procedure outlined here is necessary o
in the crossover regime since the exact geometry of the e
ter is not relevant in the limiting cases: in the quasi-2D lim
a diffusing electron typically does not reach the boundary
the disk and it is thus possible to integrate over all harmon
of the diffusion propagator in the plane of the disk, where
in the quasi-0D limit the zero mode in the plane of the d
is not damped very effectively and it dominates, enabl
one to neglect all higher harmonics. These approximati
produce the analytic results given in the main text and
both cases the position of the resonant impurityr is irrel-
evant. However, the position of the resonant impurity is c
cial in the crossover regime because it is necessary to
4-10
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over many harmonics that are influenced by the exact ge
etry of the emitter.

The correlation function of differential conductances c
be obtained from the disordered averaged current-cur
correlation function13 ^dI (V)dI (V8)& by taking the second
derivative with respect toD5ae(V2V8),

^dG~V!dG~V8!&52~ae!2
]2

]D2
^dI ~V!dI ~V8!&.

By expressing the current in terms of Green’s functions us
the single-particle Breit-Wigner resonance conducta
formula,27–29,18the correlation function takes the form12

^dG~V!dG~V8!&

52
1

b S GGG

2 D 2S ]2

]D2D G

n E dv@Pv~r ,r !1P2v~r ,r !#

~\v2D!21G2
.

~B1!

In the absence of time-reversal symmetry, the varia
changes only by the standard Dyson’s factor of 1/b, where
b51 for the orthogonal ensemble~in the presence of impu
rity scattering only! and b52 for the unitary ensemble~in
the presence of a finite magnetic field or weak scattering
magnetic impurities that breaks time-reversal invarianc!.
The diffusion propagator in the disk,Pv(r ,r ), satisfies the
following equation

@2D¹21g2 iv#Pv~r ,r 8!5d~r2r 8!. ~B2!

FIG. 13. Theoretical form of the variance^dG2& as a function of
\g/G with the resonant impurity in the center of the diskr/R
50. From the top, the long dashed line is the numerical result
LG /R51.0, dot-dashed line forLG /R51.5, and short dashed lin
for LG /R52.0. The solid lines show asymptotics at large\g/G
given by the Q2D analytic result, Eq.~8!, and the dotted line is the
Q0D analytic result, Eq.~8!. All the curves are normalized by th
Q0D analytic result, Eq.~8!. Inset is^dG2& as a function of\g/G
for LG /R51.5 and different impurity positions. Solid line isr/R
50, dotted line isr/R50.5, and long dashed line isr/R51.0.
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It describes diffusion in the disk and is therefore restricted
the tunneling barrier atz50 and an insulating boundary a
the cylinder surfacer5R. The poorly conducting interface
between the emitter and substrate is also modeled as a
neling barrier atz5L. These boundary conditions are e
pressed as

]zPuz5050, ]rPur5R50, ]zPuz5L50. ~B3!

The correlation function is found by solving the diffusio
equation, Eq.~B2!, in the presence of the boundary cond
tions, Eq.~B3!. The anglef is set to zero without loss o
generality and we find

Pv~r ,r !5
1

pR2L
(

m,anm

Jm
2 ~anmr/R!

~12m2/anm
2 !Jm

2 ~anm!

3
1

~Danm
2 /R21g2 iv!

, ~B4!

wherem50,61,62, . . . andJm is a Bessel function of the
first kind of orderm. For a givenm, the numbersanm are
solutions of the boundary condition at the cylinder surfa
r5R,

]rJm~anmr/R!ur5R50,

which may be expressed as

mJm~anm!5anmJm11~anm!.

We solve this boundary condition numerically in order
calculate the propagator, giving the variance and the corr
tion function for arbitraryLc /R and 0<r<R.

r
FIG. 14. Theoretical form of the correlation functionK(DV,0)

as a function ofDV/Vc with the resonant impurity off center of th
disk atr/R50.5. The long dashed line is the numerical result
Lc /R51.0, dot-dashed line forLc /R51.5, and short dashed lin
for Lc /R52.0. Solid and dotted lines are the Q2D and Q0D a
lytic results from Eq.~4!. Inset isK(DV,0) as a function ofDV/Vc

with the resonant impurity atr/R51.0 with line styles the same a
the main part.
4-11
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In the main text Fig. 9 shows the correlation function f
differentLc /R andr/R50 ~main part! and for different im-
purity positionsr/R ~inset!. We present here for complete
ness some further numerical results. Figure 13 shows
calculated variancêdG2& as a function of\g/G with the
resonant impurity at the center of the diskr/R50 and dif-
ferent values ofLG /R. The short dashed line is the Q0
analytic result, Eq.~8!, whereas the solid lines show asym
totics at large\g/G given by the Q2D analytic result
Eq. ~8!. As expected, the numerical plots show behav
similar to the Q0D analytic form forLc@R ~small \g/G)
and similar to Q2D forLc!R ~large\g/G) with a crossover
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at Lc'R. To analyze the effect of the position of the imp
rity we choose a particular value ofLG /R. The inset of Fig.
13 is ^dG2& for LG /R51.5 and for different impurity posi-
tions. When the impurity position is off-center the varian
has a similar qualitative form as for the impurity on the cy
inder axis, but the fluctuations appear to be genera
larger.

Figure 14 showsK(DV,0) as a function ofDV/Vc and
different values ofLc /R for r/R50.5 ~main part! and r/R
51.0 ~inset!. The crossover appears to occur more slow
~over a larger range ofLc/R) when the impurity position is
off-center.
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