274 research outputs found

    Parametric frequency mixing in the magneto-elastically driven FMR-oscillator

    Get PDF
    We demonstrate the nonlinear frequency conversion of ferromagnetic resonance (FMR) frequency by optically excited elastic waves in a thin metallic film on dielectric substrates. Time-resolved probing of the magnetization directly witnesses magneto-elastically driven second harmonic generation, sum- and difference frequency mixing from two distinct frequencies, as well as parametric downconversion of each individual drive frequency. Starting from the Landau-Lifshitz-Gilbert equations, we derive an analytical equation of an elastically driven nonlinear parametric oscillator and show that frequency mixing is dominated by the parametric modulation of FMR frequency

    Anatomy of ultrafast quantitative magneto-acoustics in freestanding nickel thin films

    Full text link
    We revisit the quantitative analysis of the ultrafast magneto-acoustic experiment in a freestanding nickel thin film by Kim and Bigot [1] by applying our recently proposed approach of magnetic and acoustic eigenmodes decomposition by Vernik et al. [2]. We show that the application of our modeling to the analysis of time-resolved reflectivity measurements allows for the determination of amplitudes and lifetimes of standing perpendicular acoustic phonon resonances with unprecedented accuracy. The acoustic damping is found to scale as ω2\propto\omega^2 for frequencies up to 80~GHz and the peak amplitudes reach 10310^{-3}. The experimentally measured magnetization dynamics for different orientations of an external magnetic field agrees well with numerical solutions of magneto-elastically driven magnon harmonic oscillators. Symmetry-based selection rules for magnon-phonon interactions predicted by our modeling approach allow for the unambiguous discrimination between spatially uniform and non-uniform modes, as confirmed by comparing the resonantly enhanced magneto-elastic dynamics simultaneously measured on opposite sides of the film. Moreover, the separation of time scales for (early) rising and (late) decreasing precession amplitudes provide access to magnetic (Gilbert) and acoustic damping parameters in a single measurement.Comment: 9 pages, 7 figure

    Resonant phonon-magnon interactions in free-standing metal-ferromagnet multilayer structures

    Full text link
    We analyze resonant magneto-elastic interactions between standing perpendicular spin wave modes (exchange magnons) and longitudinal acoustic phonon modes in free-standing hybrid metal-ferromagnet bilayer and trilayer structures. Whereas the ferromagnetic layer acts as a magnetic cavity, all metal layers control the frequencies and eigenmodes of acoustic vibrations. The here proposed design allows for achieving and tuning the spectral and spatial modes overlap between phonons and magnons that results in their strong resonant interaction. Realistic simulations for gold-nickel multilayers show that sweeping the external magnetic field should allow for observing resonantly enhanced interactions between individual magnon and phonon modes in a broad range of frequencies spanning from tens of GHz up to several hundreds of GHz, which can be finely tuned through the multilayer design. Our results would enable the systematic study and the deep understanding of resonantly enhanced magneto-elastic coupling between individual phonon and magnon modes up to frequencies of great contemporary fundamental and applied interest.Comment: 9 pages, 6 figure

    PROBLEMS OF MEASUREMENT OF DENSE PLASMA HEATING IN LASER SHOCK-WAVE COMPRESSION

    Get PDF
    Experimental results of heating measurements of matter carried out in a study of laser-driven shock waves in aluminum (Batani et al. 1997) are discussed. The measured temporal evolution of the "color" temperature of the rear surface of the target is compared with that computed by a numerical code. It has been established that the target preheating can substantially affect optical signal features recorded from the rear side of the target, and consequently influence upon the accuracy of temperature and pressure measurements of the material behind the shock wave front

    Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics

    Get PDF
    Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments
    corecore