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Abstract. Intense heavy ion beams offer a unique tool for generating samples

of high energy density matter with extreme conditions of density and pressure

that are believed to exist in the interiors of giant planets. An international

accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is

being constructed at Darmstadt, which will be completed around the year 2015.

It is expected that this accelerator facility will deliver a bunched uranium beam

with an intensity of 5 × 1011 ions per spill with a bunch length of 50–100 ns. An

experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed

to achieve a low-entropy compression of a sample material like hydrogen or

water (which are believed to be abundant in giant planets) that is imploded in a

multi-layered target by the ion beam. Detailed numerical simulations have shown

that using parameters of the heavy ion beam that will be available at FAIR, one

can generate physical conditions that have been predicted to exist in the interior

of giant planets. In the present paper, we report simulations of compression of
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water that show that one can generate a plasma phase as well as a superionic

phase of water in the LAPLAS experiments.
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1. Introduction

The interior of planets consists of matter under extreme conditions. For instance, at the center

of Jupiter, which is the biggest planet in our solar system, temperatures of about 20 000 K and

pressures of about 40 Mbar occur [1]–[7]. Besides Jupiter, other giant planets in our solar system

(Saturn, Uranus and Neptune) and also planets detected around other stars are the subject of

intense research—almost 400 extrasolar planet candidates are known today [8].

Matter in giant planets exists at high energy density (HED) so that correlations and

quantum effects become increasingly important. Therefore, a reasonable description of

planetary interiors, their structure and evolution is simultaneously also a great challenge to

methods of many-body theory. Accurate equation of state (EOS) data for the most abundant

elements represent the most important input into models of planetary interiors. The high-

pressure phase diagram and the location of the melting line are also of great interest in this

context. Furthermore, non-metal-to-metal transitions occur at high pressures, e.g. in hydrogen,

which could possibly be accompanied by first-order phase transitions such as the plasma phase

transition that has been predicted for decades [9], or a liquid–liquid transition. Other high-

pressure effects such as demixing of hydrogen and helium [10, 11] or the existence of a

superionic water phase [12]–[16] are also of great importance.

The generation and diagnostics of such extreme states of matter in the laboratory require

novel experimental techniques. Today static compression experiments can access the light

elements of interest—in this context, hydrogen and helium but also carbon, nitrogen and

oxygen as well as their hydrogen compounds methane, ammonia and water—up to several

Mbar but only at relatively low temperatures [17, 18]. Dynamic methods use shock waves

to generate high pressures of up to several Mbar and temperatures of up to several 10 000 K,

as demonstrated successfully for hydrogen, helium and water. High explosives [19], gas guns

[20, 21], lasers [22, 23] and pulsed power [24] have been used as drivers for these single or
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multiple shock wave experiments. Thereby, enormous progress has been made in high-pressure

physics, but states deep in the interior of giant planets at tens of Mbar are not accessible yet.

Over the past decade, substantial progress has been made in the technology of strongly

bunched, well-focused, high-quality intense heavy ion beams. Theoretical work on beam–matter

heating has shown that such intense beams have great potential for generating extreme states in

matter in the parameter space that is not accessible with traditional methods [25]–[42]. An

intense heavy ion beam is therefore a novel tool to study the field of HED physics (HEDP),

including planetary interiors.

The above different HEDP drivers have their advantages and disadvantages, as briefly

discussed below. When a laser beam is incident on a solid target, material ablates from the

target surface due to strong heating and the ablating material generates an ablation pressure that

drives a strong shock wave into the target. It is to be noted that only a fraction of the incident

laser energy is absorbed by the target while the rest is lost due to reflection, thereby reducing the

beam–target coupling efficiency. A higher laser intensity is desirable to achieve higher ablation

pressure; however, the intensity is limited in order to avoid the generation of suprathermal

electrons that could severely degrade the compression as a result of preheat. Moreover, because

of the sharp gradients in density, temperature and pressure, the physical conditions may not be

uniform in laser-generated HED matter samples.

Energetic ions, on the other hand, penetrate deep into solid matter and deposit their energy

quasi-uniformly over extended volumes of the target, thereby generating large samples (mm3

or even cm3) of HED matter with fairly uniform physical conditions. The beam–target coupling

efficiency is large and beam–target interaction does not lead to any preheat mechanism. Since

the ion beam deposits energy directly into solid matter, even a moderate beam intensity will

generate pressure in the multi-Mbar range (despite a relatively low induced temperature [27])

that will drive a strong shock into the target.

The energy released by high-power chemical explosives, gas guns and pulse power

machines is used to accelerate solid plates (flyer) that impact on the target to drive a strong

shock in the sample to generate HED matter.

The GSI Helmholzzentrum für Schwerionenforschung (GIS), Darmstadt has unique

accelerator facilities capable of delivering intense particle beams of all stable species, from

protons up to uranium. The accelerator capabilities of the GSI will be improved tremendously

after the completion of a new international accelerator project, FAIR (Facility for Antiprotons

and Ion Research) [43], which has already entered the construction phase. An extensive

experimental program for HED physics research, named HEDgeHOB (High Energy Density

Matter Generated by Heavy Ion Beams), has been worked out for the FAIR accelerator. One

of the important experiments to be conducted within the framework of this program is named

LAPLAS (LAboratory PLAnetary Science), in which a low-entropy compression scheme will

be used to generate physical conditions that are expected to exist in the interiors of giant planets.

Previously [28, 30], [33]–[35], [37], [40]–[42], we simulated the compression of hydrogen in a

LAPLAS scheme and this work showed that one can generate ultrahigh pressures of the order

of 30 Mbar and ultrahigh densities of up to 3 g cm−3 (30 times solid hydrogen density) using

such a scheme. In the present study we report calculations on the compression of water, which

is another important material that is presumably abundant in giant planets.

In section 2 we describe the LAPLAS scheme and in section 3 we discuss the influence

of material properties on the hydrodynamic stability of the implosion. Section 4 summarizes

the model of an ab initio EOS of water based on quantum molecular dynamics (QMD) that
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Figure 1. Beam–target setup of the LAPLAS scheme using an annular focal spot.

has been used in these calculations, whereas section 5 gives the FAIR beam parameters. The

simulation results are presented in section 6 while the conclusions drawn from this work are

noted in section 7.

2. The Laboratory Planetary Sciences (LAPLAS) experimental scheme

This experimental scheme proposes a low-entropy compression of a material such as frozen

hydrogen or ice (water) that is enclosed in a cylindrical shell of a high-Z material. This type of

experiment is suitable for studying the problem of hydrogen metallization [17, 18, 22, 23, 44]

as well as for generating physical conditions that are expected to exist in the interiors of giant

planets [1]–[7]. There are two proposed beam–target configurations for this experimental setup.

In one case a hollow beam with an annular focal spot is used to drive the target, while in the other

case a simple beam with a circular focal spot having a Gaussian transverse intensity distribution

is employed. These two cases are described in the following subsections.

2.1. LAPLAS using an annular focal spot

The proposed beam–target geometry is shown in figure 1. The target consists of a cylinder of

frozen sample material (for example, hydrogen or water) that is surrounded by a thick shell of

a heavy material. One face of the target is irradiated with an intense heavy ion beam that has an

annular (ring-shaped) focal spot. We assume that the inner radius of the annulus is larger than

the radius of the sample material, which is a necessary condition to avoid direct heating of the

sample by the ion beam (see figure 2). Moreover, we consider that the outer radius of the focal

spot ring is smaller than the outer radius of the surrounding shell. It is seen from figure 2 that

a layer of cold material from the outer shell known as ‘pusher’ or ‘payload’ is created between

the sample material and the beam-heated region. The payload plays an important role in placing

the compression on the desired adiabat. It is also seen that a cold shell around the beam-heated

zone remains as a tamper that confines the implosion for a longer time.

The target length is assumed to be less than the range of the driver ions so that the energy

deposition in the longitudinal direction is uniform. The pressure in the beam-heated region

increases substantially and launches a shock wave inwards, along the radial direction. The

shock wave enters the pusher, is subsequently transmitted into the sample and is then reflected

at the cylinder axis. The reflected shock wave moves outwards along the radial direction and

is again re-reflected at the sample–shell boundary. The boundary continues to move inwards,

thereby compressing the sample slowly. This scheme generates a low-entropy compression of

the sample material that leads to ultrahigh densities, ultrahigh pressures, but relatively low

temperatures. This scheme is suited to explore the parameter domain relevant for hydrogen

metallization [17, 18, 20, 22, 23, 44] as well as for planetary interiors [1]–[7].
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Figure 2. Cross-sectional view of the target shown in figure 1.

Circular Beam
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W

Figure 3. Beam–target setup of the LAPLAS scheme using a circular focal spot.

We note that the generation of an annular focal spot is a challenging problem. It has been

previously demonstrated that a ring-shaped focal spot can be generated using a plasma lens [45].

An alternative approach has recently been suggested to employ an rf-wobbler that will rotate the

beam with a very high frequency (of the order of a GHz) that will generate the required focal

spot geometry. A detailed analysis of the symmetry issues of energy deposition in the target

using such a system has been worked out in detail and the results have been published elsewhere

[38, 39].

2.2. LAPLAS using a circular focal spot

Figure 3 shows the case where one uses a circular focal spot instead of an annular focal spot. In

this case the sample is also directly heated by the beam, but since the pressure in the surrounding

high-density shell is significantly higher than in the sample, the sample is still compressed to

very high densities. However, the final temperature, in this case, is much higher (of the order of

a few eV) than that in the previous one.

3. The choice of target material and its implications for hydrodynamic stability

One issue of possible concern in the design of the LAPLAS experiments is the onset of

Rayleigh–Taylor instability (RTI) during the implosion process. In fact, an rf-wobbler will

be used to rotate the beam in order to generate a ring-shaped focal spot that will heat the

New Journal of Physics 12 (2010) 073022 (http://www.njp.org/)
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annular region (the absorber) surrounding a pusher made of a heavy metal. This wobbler system

will generate an azimuthal asymmetry [38, 39] that can seed hydrodynamic instabilities at the

absorber/pusher interface that may spoil the performance of the implosion. Since the pusher

remains in solid state during the implosion, the RTI will be controlled by the mechanical

properties of the pusher material. Therefore, RTI is of central importance in the design of this

experiment as well as in several other experiments on HED physics. However, in contrast to

the classical case involving Newtonian or ideal fluids [46, 47], RTI in accelerated solids has

been poorly understood so far, although it has been a subject of research for more than forty

years [46]–[62]. The difficulties of constructing a compelling theory of the linear growth phase

of RTI in solids have been essentially due to the character of the elastic–plastic constitutive

properties of a solid, which have a nonlinear dependence on the magnitude of the rate of

deformation.

We have recently developed a relatively simple, nevertheless accurate, model of the RTI

in elastic–plastic solids [63, 64], and we have come up with a stability criterion that shows that

transition to a plastic regime is a necessary but not a sufficient condition for instability as was

erroneously assumed in [60]–[62]. Let us briefly review the essential features of this model.

For constructing the model, we have assumed a uniform plate of density ρ that is thick

enough (kh ≫ 1) so that finite thickness effects can be neglected. The plate is in the plane (x, z)

and has been accelerated for a very long time until t = 0 by a constant and uniform pressure

p0 that represents a low-density fluid accelerating the plate with an acceleration Ea = −g Eey

(g = p0/ρh). At t = 0, a ripple δp = p0(ξ0/h)sin kx is superposed on the uniform pressure

p0. With the previous considerations the linear evolution of the perturbation amplitude can be

well described by the following equation of motion [40], [63]–[66]:

ρ

k
η̈ = ρg(η + η0) − Syy, (1)

where η(x, y, t) = ξ(t)ekysin kx because we assume that the perturbed velocity field can

be approximated by one corresponding to an inviscid ideal fluid. ξ(t) is the instantaneous

perturbation amplitude on the interface and Syy represents the force per unit area due to the

mechanical properties of the medium. Syy is given by the normal component of the deviatoric

part of the stress tensor σi j = −pδi j + Si j (p is the thermodynamic pressure and δi j is the

Kronecker tensor) and it can be obtained from the Prandtl–Reuss equations: Syy = 2kGη

for η 6 ηp, and Syy = Y/
√

3 sin kx for η > ηp, where ηp is the value of η for which the

elastic limit is achieved. G and Y are the shear modulus and the yield strength of the solid,

respectively. Since the onset of plastic flow occurs first on the interface and then progresses

towards the plate interior, its effects on the instability are not felt until it has affected a region

with thickness of the order of k−1. Therefore, by evaluating equation (1) at y = yp ≈ −k−1

we obtain ξ̈ = kg(ξ + ξ0) − 2k2Gξ/ρ for ξ 6 ξp, and ξ̈ = kg(ξ + ξ0) − αY k/ρ
√

3 for ξ > ξp

(ξp = αY/2
√

3kG). Since α = ek|yp|, we take α = 3. In addition, since we choose to perturb

the driving pressure, ξ(0) = 0.

From the previous equation of motion for the interface, we can obtain the condition for

marginal stability determining the instability threshold [63, 64]:

(ρgξ0/
√

3Y )TH = 1 −
√

ρgλ/4πG. (2)

We can also obtain the condition for the elastic to plastic transition (EP transition) by requiring

that the maximum amplitude ze
m be equal to the amplitude zp = λ̂/ξ̂ , which is necessary to reach

New Journal of Physics 12 (2010) 073022 (http://www.njp.org/)
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Table 1. Material data from [69].

Material Y G ρ Tmelting Vote

(GPa) (GPa) (g cm−3) (K)

W 2.2–4.0 160 19.25 4520 Very good

Ta 0.77–1.0 70 16.65 4340 Very good

Nb 0.70–1.4 85.5 8.57 2330 Quite good

Ti 0.71–1.45 43.4 4.51 2260 Quite good

Steel 0.34–2.5 77 7.85 2380 Good

Be 0.33–1.23 151 1.85 1820 Good

Al 0.29–0.68 27.6 52.7 1220 Not bad

Au 0.02–0.225 28 19.3 1970 Bad

Pb 0.008–0.1 8.6 11.34 760 Very bad

the elastic limit [63, 64]:

(ρgξ0/
√

3Y )EP = (1 − ρgλ/4πG)/2. (3)

Equations (2) and (3) determine the boundaries for the existence of stability after the elastic

limit has been reached.

These results have direct implications on the design of experiments on HED physics. For

the particular case of the LAPLAS experiments, equation (2) helps to make the best choice for

the pusher material in the cylindrical shell target. In fact, to ensure stabilizing effects from the

constitutive properties of the pusher material, we require, at least, that Y > (p0/
√

3)(ξ0/h). In

the LAPLAS experiments the asymmetry level will be essentially determined by the wobbler

system producing the beam rotation for heating the annular absorber region. For a typical

parabolic power pulse, the asymmetry level ξ0/h has been shown to be = 1/N 2, where

N is the number of revolutions of the beam during the pulse duration τbeam [37, 38]. At

present, FAIR is designed to deliver pulses with τbeam ≈ 100 ns and the wobbler system is

being designed to generate more than 30 revolutions during this pulse duration [67]. Thus,

ξ0/h ≈ 10−3. For driving pressures in the range of 1–10 Mbar, we need Y > 0.06–0.6 GPa.

The materials considered so far for LAPLAS have been gold and lead because of their high

densities (ρAu = 19.3 g cm−3; ρPb = 11.3 g cm−3). According to [68] the maximum values of

Y reported in the literature for gold and lead are, respectively, 0.225 and 0.1 GPa, which may

make them not very suitable materials for LAPLAS targets from the point of view of implosion

stability (see table 1). Better choices would be tungsten and tantalum, which have similar

densities (ρW = 19.3 g cm−3 and ρTa = 16.7 g cm−3) but higher values of Y (YW = 2.2–4 GPa

and YTa = 0.77–1 GPa), besides having the highest melting temperatures and high values of G

(GW = 160 GPa and GTa = 69 GPa).

4. The ab initio equation of state (EOS) of water

The ab initio EOS of water [16] was obtained by QMD simulations. This method treats the

electron system with finite-temperature density functional theory [69]–[71], which yields the

forces that propagate protons and oxygen nuclei via a classical MD algorithm. The pressure,

internal energy, and structural and transport properties are obtained as time averages once

New Journal of Physics 12 (2010) 073022 (http://www.njp.org/)
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Table 2. Comparison between existing and future beam parameters.

SIS18 SIS100

Intensity (ions per bunch) 4 × 109 5 × 1011

Bunch length (ns) 130 50

Particle energy (MeV u−1) 400 400–2700

Specific energy deposition (kJ g−1) 1.0 125

Specific power deposition (TW g−1) 0.005 2.5

thermodynamic equilibrium has been reached. The ab initio EOS data are converged to a general

accuracy of 1–2% and the pressures are in good agreement with diamond anvil cell data. The

ab initio pressure increases significantly stronger with density than with pressure from the

widely used SESAME 7150 table [72]. As the temperature rises to several 1000 K, the water

molecules dissociate and ionize to form a dense plasma. At high densities, the QMD simulations

also predict a superionic phase [12] with strongly diffusive protons but immobile oxygen ions

that occupy bcc lattice positions. The superionic phase shows high proton conductivity but

suppressed electronic conductivity compared with the plasma phase [15].

5. The Facility for Antiprotons and Ion Research (FAIR) beam parameters

A new powerful heavy ion synchrotron, SIS100 (100 Tm magnetic rigidity), will be built within

the framework of FAIR at Darmstadt, which will deliver an intense beam of heaviest particles

(uranium) with unprecedented intensities. According to optimum design parameters, the beam

intensity will be N = 5 × 1011 ions that will be delivered in a single bunch, 50–100 ns long. A

wide range of particle energy, namely 400–2700 MeV u−1, will be available, which will provide

great flexibility to experiment designers. The transverse beam intensity will be Gaussian and,

for HEDP experiments, the beam will be focused to a very small focal spot size with a full width

at half maximum (FWHM) of about 1 mm. For the LAPLAS experiments, a wobbler is being

designed that will generate an annular focal spot.

Table 2 shows the comparison between currently available beam parameters at the existing

GSI heavy ion synchrotron, SIS18 and at the future SIS100 accelerator. It is seen that when

SIS100 works at full capacity, beam intensity increases by a factor of 100 while specific energy

deposition and specific power deposition in the target material increase to unprecedented levels.

It is also to be noted that plans are being made to construct a huge accelerator facility at

the Institute of Modern Physics, Lanzou, China, with the aim of generating an intense uranium

beam. It is expected that in phase I, a 238U4+ beam with a particle energy of 1.29 GeV u−1 and

an intensity of 1012 ions per bunch will be accelerated. In phase II, a higher particle energy

of 3.2 GeV u−1 and an intensity of 1013 ions per bunch will be achieved [73]. It has been

proposed that the construction of this facility may start in the year 2020, which will be a big

step forward in accelerator technology. The expected beam parameters will provide a unique

opportunity to perform novel experiments in HEDP. It is also to be noted that the beam intensity

required to implode reactor-size inertial fusion targets [78]–[88] is about 1015 ions per bunch

and one requires a bunch length of the order of 10 ns. Nevertheless, one will be able to carry

out implosion experiments on a smaller scale; especially, it will be possible to study the target

physics in the prepulse regime.

New Journal of Physics 12 (2010) 073022 (http://www.njp.org/)
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6. Simulation results

In this section, we report numerical simulation results employing the two LAPLAS implosion

schemes using water as the sample material. As discussed in section 3, lead and gold are not

favorable materials due to their low values of yield strength. In the present study, we therefore

use tungsten to construct the outer high-Z shell. The simulations were carried out using a

two-dimensional hydrodynamic computer code, BIG2 [74], which is based on a Godunov-type

scheme. For tungsten we use a semi-empirical EOS [75, 76], whereas for water we use the

EOS described in section 4 and [16]. The ion energy loss in the target is calculated using the

SRIM code [77], which is based on the cold stopping model. This is a reasonable approximation

because the target temperature is not very high and the ionization effects on the stopping can be

neglected.

6.1. Using an annular focal spot

The target length is L = 7 mm, the radius of the sample (water) layer Ri = 0.2 mm and the outer

target radius Ro = 3 mm. The ion energy is considered to be 1.5 GeV u−1 and the bunch length is

50 ns. The inner radius of the annular ring is R1 = 0.4 mm and the outer radius is R2 = 1.4 mm.

We have considered different values of the beam intensity, N , including 1011, 3 × 1011 and

5 × 1011 ions per bunch, respectively.

The range of the 1.5 GeV u−1 uranium ions is significantly larger than the length of the

cylinder, and therefore the Bragg peak lies outside the target that leads to fairly uniform energy

deposition along the particle trajectory. We have considered tungsten as the outer shell material,

and the results are presented in the following.

In figure 4(a) we present the specific energy deposition in the target in the r–Z plane at

t = 50 ns, a time when the beam has just delivered its total energy. The beam is incident at

the right side of the target and the particles penetrate through the cylinder, thereby depositing

energy uniformly along their trajectories. It is seen that the specific energy deposition at the

maxima of the Gaussian distribution in the tungsten shell is about 20 kJ g−1. The corresponding

temperature distribution is presented in figure 4(b), which shows a maximum temperature of the

order of 105 K. The pressure distribution generated in the target is shown in figure 4(c), which

shows a maximum pressure of 3.7 Mbar. The high pressure in the tungsten shell generates an

outgoing as well as an inmoving shock, which are clearly seen in figure 4(d), where the density

distribution is presented. The payload density has been increased to about 25 g cm−3 due to the

compression by the inmoving shock, which is subsequently transmitted into the water region

and reverberates between the cylinder axis and the water–tungsten boundary.

In figure 5(a) we present the density distribution at t = 100 ns. It is seen that the inner target

radius has already been reduced, which means compression of the water. The process of multiple

shock reflection is seen in figure 5(b), where we plot the density versus radius at L = 3.5 mm in

the water region at different times. This multiple shock reflection scheme leads to a low-entropy

compression of the sample material. The compression results are shown in figures 6(a)–(c),

where we plot the density, temperature and pressure versus radius at L = 3.5 mm in water at

the time of maximum compression using different values of N , namely 5 × 1011, 3 × 1011 and

1011 ions per bunch, respectively. It is seen in figure 6(a) that the radius of the water region has

been reduced to 75 µm from an initial value of 200 µm. The water density is about 7 g cm−3

while the temperature within the inner 20 µm is high, which corresponds to a plasma state. In
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(a) (b)

(c) (d)

Figure 4. Cylindrical multi-layered target (water enclosed in tungsten shell), L =
7 mm, Ri = 0.2 mm, Ro = 3.0 mm facially irradiated by a uranium beam, particle

energy 1.5 GeV u−1, N = 5 × 1011 ions per bunch, bunch length = 50 ns, annular

focal spot with R1 = 0.4 mm, R2 = 1.4 mm: (a) specific energy deposition;

(b) temperature; (c) pressure; and (d) density; in the r–Z plane at t = 50 ns.
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Figure 5. (a) Density at t = 100 ns corresponding to the case presented in

figure 4; (b) density versus radius at L = 3.5 mm at different times.
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Figure 6. Density, temperature and pressure versus target radius at L = 3.5 mm

in water at the time of maximum compression: (a) N = 5 × 1011, (b) N =
3 × 1011 and (c) N = 1011 using a tungsten outer shell driven by an annular focal

spot.

the outer part, however, the temperature is below 7000 K and the pressure is of the order of

15 Mbar, which corresponds to a superionic state of water in which the protons are mobile in

an oxygen lattice [16]. The following figures show that as the beam intensity decreases, the

density, temperature and pressure in the compressed water decrease and the region in which

the superionic phase exists increases. Figure 6(c) shows that in the case of N = 1011 ions per

bunch, the maximum density is 4.5 g cm−3, the maximum pressure is about 4 Mbar and the

average temperature is of the order of 3000 K, and the entire sample is in a superionic phase.

This is an important result because the beam intensity at FAIR will increase gradually

before achieving the maximum value. Therefore, one will be able to carry out very interesting

experiments even with significantly lower beam intensities that will be available during the

initial stages of the FAIR project.

6.2. Using a circular focal spot

Since construction of the wobbler system is a challenging problem, we also worked on an

alternative LAPLAS scheme in case the availability of the wobbler is delayed. In this alternative
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Figure 7. Density, temperature and pressure versus target radius at L = 3.5 mm

in water at the time of maximum compression: (a) N = 5 × 1011, (b) N =
3 × 1011 and (c) N = 1011 using a tungsten outer shell driven by a circular focal

spot with FWHM = 1.5 mm.

scheme, a circular focal spot with a Gaussian transverse intensity distribution is used that

facially irradiates the LAPLAS target (see figure 3). In such a beam–target configuration, the

sample material is also strongly heated by the ion beam together with a part of the surrounding

shell. However, due to the large density difference between the sample and the shell material, the

pressure generated in the heated part of the shell is substantially higher than that in the sample.

Therefore, the sample still gets highly compressed, although in this case the temperature is much

higher than in the other case.

We have simulated three different cases that use different values of the beam intensity,

N = 5 × 1011, 3 × 1011 and 1011 ions per bunch, respectively. A circular focal spot having a

Gaussian transverse intensity distribution, with FWHM = 1.5 mm, is considered.

Figures 7(a)–(c) plot the density, temperature and pressure versus radius in water at the

time of maximum compression using the above different values of the beam intensity. The outer

shell of the target is made of tungsten. It is seen in figure 7(a) that for N = 5 × 1011 ions per

bunch, one achieves a density of the order of 3 g cm−3 and a temperature of about 50 000 K
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Figure 8. (a) Temperature versus N , (b) pressure versus N and (c) density versus

N for a circular focal spot for different values of FWHM using a tungsten outer

shell.

while the pressure is about 5 Mbar, which shows that one has a plasma phase of water in the

entire sample. It is also worth noting that the temperature in this case is fairly uniform along the

radius.

Figures 7(b) and (c) show that in all the different cases, one achieves the same material

density, but the temperature is very different. In figure 7(c), which corresponds to a beam

intensity of 1011 ions per bunch, the temperature is about 10 000 K. However, according to [16],

the physical conditions achieved in all three different cases presented in figure 7 correspond to

a plasma state of water. It is therefore concluded that using a LAPLAS scheme with a circular

focal spot, one cannot achieve the superionic water phase. For this purpose, the availability of a

wobbler system is absolutely essential.

In order to study the effect of focal spot size on compression, we also carried out

simulations using different values of the focal spot size with FWHM = 1.0, 1.5, 2.0 and 2.5 mm,

respectively, for different values of the beam intensity. The results are presented in figure 8. In

figure 8(a) we plot the sample temperature versus beam intensity for the four different values

of the FWHM. It is seen that using FWHM = 1.0 mm, the temperature increases from 20 000
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Figure 9. Each colored point corresponds to a QMD simulation in

thermodynamic equilibrium. When the electronic conductivity exceeds

100 (ohm cm)−1 [15], the ionic (dissociated) fluid is labeled as plasma. The solid

line is the principal Hugoniot curve.

to 80 000 K over the considered range of beam intensity. As the size of the focal spot increases,

the specific energy deposition decreases (inversely proportional to the square of the spot radius)

and, consequently, the temperature decreases.

The corresponding pressure profiles are presented in figure 8(b), which show behavior

similar to the temperature profiles. It is seen that one can achieve a maximum pressure on the

order of 7 Mbar using this scheme.

The density curves are presented in figure 8(c), which show that the final density is of the

order of 3 g cm−3. These figures again demonstrate that one can only access a plasma state of

water using this scheme.

In figure 9 we present a phase diagram of water [16] in which the areas accessible in the

LAPLAS experiments are highlighted. It is clearly seen that using a circular focal spot one

can access the plasma state, whereas using an annular focal spot it is possible to generate the

interesting superionic phase of water as well as Ice VII and Ice X phases.

7. Summary and conclusion

The FAIR accelerator facilities will provide very powerful high-quality heavy ion beams with

unprecedented intensities. Extensive theoretical work on beam matter heating over the past

decade [25]–[41] has shown that the ion beams that will be generated at FAIR will be a very

unique and very efficient tool to study HEDP in those regions of parameter space that are not

so easy to access with traditional methods. A detailed experimental program for HEDP studies,

HEDgeHOB, has already been proposed. One of the experiments suggested in this proposal,

LAPLAS, employs an ion beam to drive a low-entropy compression of a sample material like

hydrogen or water that is enclosed in a cylindrical shell of a heavy material. Two different

beam–target configurations have been worked out for this scheme. In one scheme, the target
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implosion is driven by a hollow beam with an annular focal spot, whereas in the other case, a

normal circular focal spot with a Gaussian transverse intensity distribution in the radial direction

is considered.

In the present paper we report detailed hydrodynamic simulations of the compression of

water, which presumably is abundantly found in some of the giant planets such as Uranus and

Neptune. These simulations have been carried out using a two-dimensional computer code,

BIG2 [74], which is based on a Gudonov-type scheme. For water, we use an ab initio EOS that

is based on QMD [16]. Although the maximum beam intensity, N , at the FAIR accelerator is

expected to be 5 × 1011 uranium ions per bunch, we have also carried out simulations using

much lower values of N . This is because the beam intensity will increase gradually, and it is

important to know if one can perform interesting experiments during the early stages of the

FAIR project before the maximum intensity will be achieved.

It is reported that the stability of the implosion is dependent on the material properties

of the surrounding shell. A higher yield strength is desirable for achieving this purpose. Gold

and lead, which have been previously used as target materials, are not good from this point of

view. It has been concluded that tungsten and niobium, which have densities similar to gold and

lead, respectively, are more favorable. In the present paper, we have therefore used tungsten to

construct the outer shell.

The results presented in this paper have shown that one can achieve the very interesting

superionic phase of water [16] using the LAPLAS scheme driven by an annular focal spot. One

achieves a density in the range of 5–7 g cm−3, a temperature of the order of 2000–5000 K and a

pressure between 4 and 16 Mbar, using beam intensities N from 1011–5 × 1011 ions per bunch.

With a circular focal spot, on the other hand, the temperature is too high and one can only

access the plasma state of water. The simulations show that for the above range of parameters,

one achieves density of the order of 3 g cm−3, temperature in the range of 8000–80 000 K and

pressure between 0.8 and 7 Mbar.
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