1,125 research outputs found

    Characterization and comparison of enterococcus spp. Isolates from feces of healthy dogs and urine of dogs with utis

    Get PDF
    Enterococcus spp. are opportunistic pathogens of both humans and animals characterized by high resistance to antimicrobials. Dogs could be intestinal carriers or suffer from Enterococcus infections, mainly urinary tract infections (UTIs). This study aimed to analyze and compare En-terococcus spp. isolated from healthy dog stools and sick dog urine. Overall, 51 isolates (29 from stools and 22 from UTI) were characterized at species level and tested for antimicrobial resistance, biofilm production and presence of resistance and virulence genes. E. faecium and E. faecalis resulted as equally distributed in stools samples, while E. faecalis predominated among UTI isolates. HLAR phenotype was detected in 47.1% isolates; 64.7% isolates were resistant to ampicillin (47.1% with a MIC ≄ 64 ”g/mL). High levels of resistance were recorded for fluoroquinolones (enrofloxacin 74.5%, ciprofloxacin 66.7%), clindamycin (84.3%), tetracycline (78.4%) and quinupristin–dalfopristin (78.4%). No vancomycin resistant strains were detected. All but one isolate were multidrug-resistant. Most detected resistance genes were tetM (70.5%), pbp4 (52.9%) and aph(3â€Č )-IIIa (39.2%). All isolates were able to produce biofilm, but isolates from UTIs and belonging to E. faecalis more frequently resulted in strong biofilm producers. Most detected virulence genes were asa1 (52.9%), gelE (41.2%), cylA (37.3%) and esp (35.3%); all of them resulted as more frequently associated to E. faecalis. No particular differences emerged between isolates from feces and UTI, considering all evaluated aspects. Our results confirm pet dogs as carriers of multidrug-resistant enterococci; stool microflora could be considered as the most probable source of enterococcal UTI and E. faecalis carried by dogs seems to be more virulent than E. faecium, justifying its more frequent involvement in urinary tract infections

    Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors

    Full text link
    The displacement noise in the test mass mirrors of interferometric gravitational wave detectors is proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one fundamental source of dissipation in thin coatings, thermoelastic damping associated with the dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The predicted size of these effects is large enough to affect the interpretation of loss measurements, and to influence design choices in advanced gravitational wave detectors.Comment: 42 pages, 7 figures, uses REVTeX

    Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

    Get PDF
    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∌10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions

    INTERNAL FRICTION AND YOUNG'S MODULUS MEASUREMENTS ON SiO2 AND Ta2O5 FILMS DONE WITH AN ULTRA-HIGH Q SILICON-WAFER SUSPENSION

    No full text
    International audienceIn order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension) has been developed. The key features of this system are: i) the possibility to use substrates easily available like silicon wafers; ii) extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×10^8 on 3 " diameter wafers; iii) reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv) absence of clamping; v) the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO 2 and at room temperature only on Ta2O5 films deposited on silicon are presented

    Silica suspension and coating developments for Advanced LIGO

    Get PDF
    The proposed upgrade to the LIGO detectors to form the Advanced LIGO detector system is intended to incorporate a low thermal noise monolithic fused silica final stage test mass suspension based on developments of the GEO 600 suspension design. This will include fused silica suspension elements jointed to fused silica test mass substrates, to which dielectric mirror coatings are applied. The silica fibres used for GEO 600 were pulled using a Hydrogen-Oxygen flame system. This successful system has some limitations, however, that needed to be overcome for the more demanding suspensions required for Advanced LIGO. To this end a fibre pulling machine based on a CO2 laser as the heating element is being developed in Glasgow with funding from EGO and PPARC. At the moment a significant limitation for proposed detectors like Advanced LIGO is expected to come from the thermal noise of the mirror coatings. An investigation on mechanical losses of silica/tantala coatings was carried out by several labs involved with Advanced LIGO R&D. Doping the tantala coating layer with titania was found to reduce the coating mechanical dissipation. A review of the results is given here

    Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings

    Full text link
    We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate and the mechanical loss angle in the coating is anisotropic. The loss angle in the coatings for strains parallel to the substrate surface was determined from ringdown experiments. We measured the mechanical quality factor of three fused silica samples with coatings deposited on them. The loss angle of the coating material for strains parallel to the coated surface was found to be (4.2 +- 0.3)*10^(-4) for coatings deposited on commercially polished slides and (1.0 +- 0.3)*10^{-4} for a coating deposited on a superpolished disk. Using these numbers, we estimate the effect of coatings on thermal noise in the initial LIGO and advanced LIGO interferometers. We also find that the corresponding prediction for thermal noise in the 40 m LIGO prototype at Caltech is consistent with the noise data. These results are complemented by results for a different type of coating, presented in a companion paper.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to Phys. Lett.

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    Get PDF
    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M⊙–25 M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors

    Status of the GEO600 gravitational wave detector

    Get PDF
    The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 ÎŒ\mus at high frequency. A bias lower than 4 Όs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ
    • 

    corecore