41 research outputs found

    Interactivity in map learning: The effect of cognitive load

    Get PDF
    The hypothesis that active learning is beneficial relative to passive observation was assessed in the context of spatial knowledge derived from maps. Active and passive participants studied a map either while performing a simultaneous spatial tapping task (high cognitive load) or in the absence of this task (low cognitive load). Active participants controlled how the map was learned, with passive participants observing map learning without exercising control. Spatial recall was assessed in two tests, directional judgements and map drawing. Map drawing and directional judgments showed a similar pattern of results, with performance detrimentally affected by a high load for active participants, but not for passive participants. The results indicate that activity and cognitive load interact, suggesting that active learning can be detrimental to spatial learning in cognitively demanding tasks.Matthew James Knight and Michael Tlauk

    Map learning and working memory: multimodal learning strategies

    Get PDF
    The current research investigated whether learning spatial information from a map involves different modalities, which are managed by discrete components in working memory. In four experiments, participants studied a map either while performing a simultaneous interference task (high cognitive load) or without interference (low cognitive load). The modality of interference varied between experiments. Experiment 1 used a tapping task (visuospatial), Experiment 2 a backward counting task (verbal), Experiment 3 an articulatory suppression task (verbal) and Experiment 4 an n-back task (central executive). Spatial recall was assessed in two tests: directional judgements and map drawing. Cognitive load was found to affect spatial recall detrimentally regardless of interference modality. The findings suggest that when learning maps, people use a multimodal learning strategy, utilising resources from all components of working memory.Matthew James Knight and Michael Tlauk

    Effects of hyperlinks on navigation in virtual environments

    No full text
    Hyperlinks introduce discontinuities of movement to 3-D virtual environments (VEs). Nine independent attributes of hyperlinks are defined and their likely effects on navigation in VEs are discussed. Four experiments are described in which participants repeatedly navigated VEs that were either conventional (i.e. obeyed the laws of Euclidean space), or contained hyperlinks. Participants learned spatial knowledge slowly in both types of environment, echoing the findings of previous studies that used conventional VEs. The detrimental effects on participants' spatial knowledge of using hyperlinks for movement were reduced when a time-delay was introduced, but participants still developed less accurate knowledge than they did in the conventional VEs. Visual continuity had a greater influence on participants' rate of learning than continuity of movement, and participants were able to exploit hyperlinks that connected together disparate regions of a VE to reduce travel time

    Human place and response learning: navigation strategy selection, pupil size and gaze behavior.

    Get PDF
    In this study, we examined the cognitive processes and ocular behavior associated with on-going navigation strategy choice using a route learning paradigm that distinguishes between three different wayfinding strategies: an allocentric place strategy, and the egocentric associative cue and beacon response strategies. Participants approached intersections of a known route from a variety of directions, and were asked to indicate the direction in which the original route continued. Their responses in a subset of these test trials allowed the assessment of strategy choice over the course of six experimental blocks. The behavioral data revealed an initial maladaptive bias for a beacon response strategy, with shifts in favor of the optimal configuration place strategy occurring over the course of the experiment. Response time analysis suggests that the configuration strategy relied on spatial transformations applied to a viewpoint-dependent spatial representation, rather than direct access to an allocentric representation. Furthermore, pupillary measures reflected the employment of place and response strategies throughout the experiment, with increasing use of the more cognitively demanding configuration strategy associated with increases in pupil dilation. During test trials in which known intersections were approached from different directions, visual attention was directed to the landmark encoded during learning as well as the intended movement direction. Interestingly, the encoded landmark did not differ between the three navigation strategies, which is discussed in the context of initial strategy choice and the parallel acquisition of place and response knowledge

    The process of spatial knowledge acquisition in a square and a circular virtual environment

    Get PDF
    This study investigated the effect of the environmental structure (circular vs. square environment) on spatial knowledge acquisition in a desktop virtual situation in which self-determined movement was allowed with a total of 120 participants: 7-, 8-year-old children; 11, 12-year-old children, and adults. In all measurements of spatial knowledge acquisition an overall developmental performance increase from younger children to adults was found. In contrast to that, the exploration and learning behavior did not differ between adults and children. Furthermore, the environmental structure influencedthenumber of trials needed to learn the two routes used and the distance walked to the determined landmarks. All these tasks were easier in a circular than in a square environment. This influenceofthe environmental structure was absent in the direction estimations task. The advantage of spatial knowledge acquisition in a circular environment in three of four tasks is discussed

    No advantage for remembering horizontal over vertical spatial locations learned from a single viewpoint

    Get PDF
    Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding room—for example, in the form of a memorized view

    Digit Ratio Predicts Sense of Direction in Women

    Get PDF
    The relative length of the second-to-fourth digits (2D:4D) has been linked with prenatal androgen in humans. The 2D:4D is sexually dimorphic, with lower values in males than females, and appears to correlate with diverse measures of behavior. However, the relationship between digit ratio and cognition, and spatial cognition in particular, has produced mixed results. In the present study, we hypothesized that spatial tasks separating cue conditions that either favored female or male strategies would examine this structure-function correlation with greater precision. Previous work suggests that males are better in the use of directional cues than females. In the present study, participants learned a target location in a virtual landscape environment, in conditions that contained either all directional (i.e., distant or compass bearing) cues, or all positional (i.e., local, small objects) cues. After a short delay, participants navigated back to the target location from a novel starting location. Males had higher accuracy in initial search direction than females in environments with all directional cues. Lower digit ratio was correlated with higher accuracy of initial search direction in females in environments with all directional cues. Mental rotation scores did not correlate with digit ratio in either males or females. These results demonstrate for the first time that a sex difference in the use of directional cues, i.e., the sense of direction, is associated with more male-like digit ratio.National Science Foundation (U.S.) (NSF ECCS-1028319)National Science Foundation (U.S.) (NSF Graduate Student Fellowship)Mary Elisabeth Rennie Endowment for Epilepsy Researc

    Interactive map learning: The effects of cognitive load

    No full text
    Abstract onlyMatthew Knight, Michael Tlauk

    Encoding of multiple map orientations

    No full text
    corecore