500 research outputs found
Resolving asymmetries along the pulsation cycle of the Mira star X Hya
The mass-loss process in Mira stars probably occurs in an asymmetric way
where dust can form in inhomogeneous circumstellar molecular clumps. Following
asymmetries along the pulsation cycle can give us clues about these mass-loss
processes. We imaged the Mira star X Hya and its environnement at different
epochs to follow the evolution of the morphology in the continuum and in the
molecular bands. We observed X Hya with AMBER in J-H-K at low resolution at two
epochs. We modelled squared visibilities with geometrical and physical models.
We also present imaging reconstruction results obtained with MiRA and based on
the physical a priori images. We report on the angular scale change of X Hya
between the two epochs. 1D CODEX profiles allowed us to understand and model
the spectral variation of squared visibilities and constrain the stellar
parameters. Reconstructed model-dependent images enabled us to reproduce
closure phase signals and the azimuthal dependence of squared visibilities.
They show evidence for material inhomogeneities located in the immediate
environment of the star.Comment: Accepted for publication in A&A, 17 pages, 16 figure
Milli-arcsecond images of the Herbig Ae star HD 163296
The very close environments of young stars are the hosts of fundamental
physical processes, such as planet formation, star-disk interactions, mass
accretion, and ejection. The complex morphological structure of these
environments has been confirmed by the now quite rich data sets obtained for a
few objects by near-infrared long-baseline interferometry. We gathered numerous
interferometric measurements for the young star HD163296 with various
interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an
image independent of any a priori model to be reconstructed. Using the
Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of
HD 163296 in the H and K bands. We compare these images with reconstructed
images obtained from simulated data using a physical model of the environment
of HD 163296. We obtain model-independent and -band images of the
surroundings of HD 163296. The images present several significant features that
we can relate to an inclined asymmetric flared disk around HD 163296 with the
strongest intensity at about 4-5 mas. Because of the incomplete spatial
frequency coverage, we cannot state whether each of them individually is
peculiar in any way. For the first time, milli-arcsecond images of the
environment of a young star are produced. These images confirm that the
morphology of the close environment of young stars is more complex than the
simple models used in the literature so far.Comment: 11 pages, 10 figures, accepted A&A pape
The Pulsation of Chi Cygni Imaged by Optical Interferometry; a Novel Technique to Derive Distance and Mass of Mira Stars
We present infrared interferometric imaging of the S-type Mira star Chi
Cygni. The object was observed at four different epochs in 2005-2006 with the
IOTA optical interferometer (H band). Images show up to 40% variation in the
stellar diameter, as well as significant changes in the limb darkening and
stellar inhomogeneities. Model fitting gave precise time-dependent values of
the stellar diameter, and reveals presence and displacement of a warm molecular
layer. The star radius, corrected for limb darkening, has a mean value of 12.1
mas and shows a 5.1mas amplitude pulsation. Minimum diameter was observed at
phase 0.94+/-0.01. Maximum temperature was observed several days later at phase
1.02+/-0.02. We also show that combining the angular acceleration of the
molecular layer with CO (Delta v = 3) radial velocity measurements yields a
5.9+/-1.5 mas parallax. The constant acceleration of the CO molecules -- during
80% of the pulsation cycle -- lead us to argument for a free-falling layer. The
acceleration is compatible with a gravitational field produced by a
2.1(+1.5/-0.7) solar mass star. This last value is in agreement with
fundamental mode pulsator models. We foresee increased development of
techniques consisting in combining radial velocity with interferometric angular
measurements, ultimately allowing total mapping of the speed, density, and
position of the diverse species in pulsation driven atmospheres.Comment: 36 pages, accepted in Ap
A self-calibration approach for optical long baseline interferometry imaging
Current optical interferometers are affected by unknown turbulent phases on
each telescope. In the field of radio-interferometry, the self-calibration
technique is a powerful tool to process interferometric data with missing phase
information. This paper intends to revisit the application of self-calibration
to Optical Long Baseline Interferometry (OLBI). We cast rigorously the OLBI
data processing problem into the self-calibration framework and demonstrate the
efficiency of the method on real astronomical OLBI dataset
User-friendly imaging algorithms for interferometry
OPTICON currently supports a Joint Research Activity (JRA) dedicated to providing easy to use image reconstruction algorithms for optical/IR interferometric data. This JRA aims to provide state-of-the-art image reconstruction methods with a common interface and comprehensive documentation to the community. These tools will provide the capability to compare the results of using different settings and algorithms in a consistent and unified way. The JRA is also providing tutorials and sample datasets to introduce the principles of image reconstruction and illustrate how to use the software products. We describe the design of the imaging tools, in particular the interface between the graphical user interface and the image reconstruction algorithms, and summarise the current status of their implementation.European Community’s Seventh Framework Programme (FP7/2013–2016) (Grant ID: 312430 (OPTICON))This is the author accepted manuscript. The final version is available from SPIE via http://dx.doi.org/10.1117/12.223338
Polychromatic Laser Guide Star. Progress report and modeless laser
International audienceWe report the current status of the polychromatic laser guide star pro-gramme ELP-OA, and the new developments: the modeless laser allowinga continuous match of the laser FWHM with that of the Na D2 line in themesosphere, and ATTILA the ¯rst bench of the ELP-OA demonstrator
Resolving asymmetries along the pulsation cycle of the Mira star X Hydrae
Context. The mass-loss process in Mira stars probably occurs in an asymmetric way where dust can form in inhomogeneous circumstellar molecular clumps. Following asymmetries along the pulsation cycle can give us clues about these mass-loss processes. Aims. We imaged the Mira star X Hya and its environnement at different epochs to follow the evolution of the morphology in the continuum and in the molecular bands. Methods. We observed X Hya with AMBER in J-H-K at low resolution at two epochs. We modelled squared visibilities with geometrical and physical models. We also present imaging reconstruction results obtained with MiRA and based on the physical a priori images. Results. We report on the angular scale change of X Hya between the two epochs. 1D CODEX profiles allowed us to understand and model the spectral variation of squared visibilities and constrain the stellar parameters. Reconstructed model-dependent images enabled us to reproduce closure phase signals and the azimuthal dependence of squared visibilities. They show evidence for material inhomogeneities located in the immediate environment of the star
- …