63 research outputs found

    Enhanced Eshelby twist on thin wurtzite InP nanowires and measurement of local crystal rotation

    Get PDF
    We have performed a detailed study of the lattice distortions of InP wurtzite nanowires containing an axial screw dislocation. Eshelby predicted that this kind of system should show a crystal rotation due to the dislocation induced torque. We have measured the twisting rate and the dislocation Burgers vector on individual wires, revealing that nanowires with a 10-nm radius have a twist up to 100% larger than estimated from elasticity theory. The strain induced by the deformation has a Mexican-hat-like geometry, which may create a tube-like potential well for carriers

    Ferromagnetic Quantum Criticality in the Quasi-One-Dimensional Heavy Fermion Metal YbNi4P2

    Full text link
    We present a new Kondo-lattice system, YbNi4P2, which is a clean heavy-fermion metal with a severely reduced ferromagnetic ordering temperature at T_C=0.17K, evidenced by distinct anomalies in susceptibility, specific-heat, and resistivity measurements. The ferromagnetic nature of the transition, with only a small ordered moment of ~0.05mu_B, is established by a diverging susceptibility at T_C with huge absolute values in the ferromagnetically ordered state, severely reduced by small magnetic fields. Furthermore, YbNi4P2 is a stoichiometric system with a quasi-one-dimensional crystal and electronic structure and strong correlation effects which dominate the low temperature properties. This is reflected by a stronger-than-logarithmically diverging Sommerfeld coefficient and a linear-in-T resistivity above T_C which cannot be explained by any current theoretical predictions. These exciting characteristics are unique among all correlated electron systems and make this an interesting material for further in-depth investigations.Comment: 14 pages, 6 figure

    Magnetic and structural properties of the iron silicide superconductor LaFeSiH

    Full text link
    The magnetic and structural properties of the recently discovered pnictogen/chalcogen-free superconductor LaFeSiH (Tc≃10T_c\simeq10~K) have been investigated by 57^{57}Fe synchrotron M{\"o}ssbauer source (SMS) spectroscopy, x-ray and neutron powder diffraction and 29^{29}Si nuclear magnetic resonance spectroscopy (NMR). No sign of long range magnetic order or local moments has been detected in any of the measurements and LaFeSiH remains tetragonal down to 2 K. The activated temperature dependence of both the NMR Knight shift and the relaxation rate 1/T11/T_1 is analogous to that observed in strongly overdoped Fe-based superconductors. These results, together with the temperature-independent NMR linewidth, show that LaFeSiH is an homogeneous metal, far from any magnetic or nematic instability, and with similar Fermi surface properties as strongly overdoped iron pnictides. This raises the prospect of enhancing the TcT_c of LaFeSiH by reducing its carrier concentration through appropriate chemical substitutions. Additional SMS spectroscopy measurements under hydrostatic pressure up to 18.8~GPa found no measurable hyperfine field

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Probing Functional Oxides by Ultra-High Resolution EELS under Variable-Temperature Stimuli

    No full text
    International audienc
    • 

    corecore