3,130 research outputs found

    Breaking degeneracy in jet dynamics: multi-epoch joint modelling of the BL Lac PKS 2155-304

    Get PDF
    Supermassive black holes can launch powerful jets which can be some of the most luminous multi-wavelength sources; decades after their discovery their physics and energetics are still poorly understood. The past decade has seen a dramatic improvement in the quality of available data, but despite this improvement the semi-analytical modelling of jets has advanced slowly: simple one-zone models are still the most commonly employed method of interpreting data, in particular for AGN jets. These models can roughly constrain the properties of jets but they cannot unambiguously couple their emission to the launching regions and internal dynamics, which can be probed with simulations. However, simulations are not easily comparable to observations because they cannot yet self-consistently predict spectra. We present an advanced semi-analytical model which accounts for the dynamics of the whole jet, starting from a simplified parametrization of Relativistic Magnetohydrodynamics in which the magnetic flux is converted into bulk kinetic energy. To benchmark the model we fit six quasisimultaneous, multi-wavelength spectral energy distributions of the BL Lac PKS 2155-304 obtained by the TANAMI program, and we address the degeneracies inherent to such a complex model by employing a state-of-the-art exploration of parameter space, which so far has been mostly neglected in the study of AGN jets. We find that this new approach is much more effective than a single-epoch fit in providing meaningful constraints on model parameters.Comment: Accepted for publication on MNRA

    The jet-disk symbiosis without maximal jets: 1-D hydrodynamical jets revisited

    Get PDF
    In this work we discuss the recent criticism by Zdziarski of the maximal jet model derived in Falcke & Biermann (1995). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1-D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1-D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.Comment: 7 pages, accepted by A&

    A study of omega bands and Ps6 pulsations on the ground, at low altitude and at geostationary orbit

    Get PDF
    We investigate the electrodynamic coupling between auroral omega bands and the inner magnetosphere. The goal of this study is to determine the features to which omega bands map in the magnetosphere. To establish the auroral-magnetosphere connection, we appeal to the case study analysis of the data rich event of September 26, 1989. At 6 magnetic local time (MLT), two trains of Ps6 pulsations (ground magnetic signatures of omega bands) were observed to drift over the Canadian Auroral Network For the OPEN Program Unified Study (CANOPUS) chain. At the same time periodic ionospheric flow patterns moved through the collocated Bistatic Auroral Radar System (BARS) field of view. Similar coincident magnetic variations were observed by GOES 6, GOES 7 and SCATHA, all of which had magnetic foot points near the CANOPUS/BARS stations. SCATHA, which was located at 6 MLT, 0.5 RE earthward of GOES 7 observed the 10 min period pulsations, whereas GOES 7 did not. In addition, DMSP F6 and F8 were over-flying the region and observed characteristic precipitation and flow signatures. From this fortunate constellation of ground and space observations, we conclude that auroral omega bands are the electrodynamic signature of a corrugated current sheet (or some similar spatially localized magnetic structure) in the near-Earth geostationary magnetosphere

    Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation

    Get PDF
    At approximately 08:25 UT on 5 April 2010, a CME-driven shock compressed Earth's magnetosphere and applied about 15 nT of southward IMF for nearly an hour. A substorm growth phase and localized dipolarization at 08:47 UT were followed by large dipolarizations at 09:03 UT and 09:08 UT, observed by GOES West (11) in the midnight sector, and by three THEMIS spacecraft near X=−11, Y=−2 RE. A large electric field at the THEMIS spacecraft indicates so much flux transfer to the inner magnetosphere that "overdipolarization" took place at GOES 11. This transfer is consistent with the ground and space magnetic signature of the substorm current wedge. Significant particle injections were also observed. The ensemble of extreme geophysical conditions, never previously observed, is consistent with the Near-Earth Neutral Line interpretation of substorms, and subjected the Galaxy 15 geosynchronous satellite to space weather conditions which appear to have induced a major operational anomaly

    Multi-wavelength astronomical searches for primordial black holes

    Get PDF
    If primordial black holes of O(1–100) M_⊙ constitute a significant portion of the dark matter in the Universe, they should be very abundant in our Galaxy. We present here a detailed analysis of the radio and X-ray emission that these objects are expected to produce due to the accretion of gas from the interstellar medium. With respect to previous studies, we relax the assumption of a monochromatic mass function, and introduce an improved treatment of the physics of gas accretion onto isolated, moving compact objects, based on a set of state-of-the-art numerical simulations. By comparing our predictions with known radio and X-ray sources in the Galactic center region, we show that the maximum relic density of primordial black holes in the mass range of interest is ~ 10^(−3) smaller than that of dark matter. The new upper bound is two orders of magnitude stronger with respect to previous results, based on a conservative phenomenological treatment of the accretion physics. We also provide a comprehensive critical discussion on the reliability of this bound, and on possible future developments in the field. We argue in particular that future multi-wavelength searches will soon start to probe the galactic population of astrophysical black holes

    Multi-wavelength astronomical searches for primordial black holes

    Get PDF
    If primordial black holes of O(1−100)M⊙\mathcal{O}(1-100) M_{\odot} constitute a significant portion of the dark matter in the Universe, they should be very abundant in our Galaxy. We present here a detailed analysis of the radio and X-ray emission that these objects are expected to produce due to the accretion of gas from the interstellar medium. With respect to previous studies, we relax the assumption of a monochromatic mass function, and introduce an improved treatment of the physics of gas accretion onto isolated, moving compact objects, based on a set of state-of-the-art numerical simulations. By comparing our predictions with known radio and X-ray sources in the Galactic center region, we show that the maximum relic density of primordial black holes in the mass range of interest is ∼10−3\sim 10^{-3} smaller than that of dark matter. The new upper bound is two orders of magnitude stronger with respect to previous results, based on a conservative phenomenological treatment of the accretion physics. We also provide a comprehensive critical discussion on the reliability of this bound, and on possible future developments in the field. We argue in particular that future multi-wavelength searches will soon start to probe the galactic population of astrophysical black holes.Comment: 21 pages, 6 figures. Prepared for submission to JCA

    The Locations of Gamma-Ray Bursts Measured by COMPTEL

    Get PDF
    The COMPTEL instrument on the Compton Gamma Ray Observatory is used to measure the locations of gamma-ray bursts through direct imaging of MeV photons. In a comprehensive search, we have detected and localized 29 bursts observed between 1991 April 19 and 1995 May 31. The average location accuracy of these events is 1.25\arcdeg (1σ\sigma), including a systematic error of \sim0.5\arcdeg, which is verified through comparison with Interplanetary Network (IPN) timing annuli. The combination of COMPTEL and IPN measurements results in locations for 26 of the bursts with an average ``error box'' area of only ∼\sim0.3 deg2^2 (1σ\sigma). We find that the angular distribution of COMPTEL burst locations is consistent with large-scale isotropy and that there is no statistically significant evidence of small-angle auto-correlations. We conclude that there is no compelling evidence for burst repetition since no more than two of the events (or ∼\sim7% of the 29 bursts) could possibly have come from the same source. We also find that there is no significant correlation between the burst locations and either Abell clusters of galaxies or radio-quiet quasars. Agreement between individual COMPTEL locations and IPN annuli places a lower limit of ∼\sim100~AU (95% confidence) on the distance to the stronger bursts.Comment: Accepted for publication in the Astrophysical Journal, 1998 Jan. 1, Vol. 492. 33 pages, 9 figures, 5 table
    • …
    corecore