5 research outputs found

    Identification of clouds and aurorae in optical data images

    Get PDF
    In this paper we present an automatic image recognition technique used to identify clouds and aurorae in digital images, taken with a CCD all-sky imager. The image recognition algorithm uses image segmentation to generate a binary block object image. Object analysis is then performed on the binary block image, the results of which are used to assess whether clouds, aurorae and stars are present in the original image. The need for such an algorithm arises because the optical study of particle precipitation into the Earth's atmosphere by the Ionosphere and Radio Propagation Group at Lancaster generates vast data-sets, over 25 000 images/year, making manual classification of all the images impractical

    Reconciliation of the Substorm Onset Determined on the Ground and at the Polar spacecraft

    Get PDF
    An isolated substorm on Oct. 17, 1997 during a close conjunction of the Polar spacecraft and the ground-based MIRACLE network is studied in detail. We identify signatures of substorm onset in the plasma sheet midway between the ionosphere and the equatorial plasma sheet, determine their timing relative to the ground signatures, and discuss their counterparts on the ground and in the equatorial plasma sheet. The substorm onset is determined as the negative bay onset at 2040:42(≠ 5 sec) UT coinciding with the onset of auroral precipitation, energization of plasma sheet electrons at Polar, and strong magnetic field variations perpendicular to the ambient field. Such accurate timing coincidence is consistent with the Alfvén transit time between Polar and the ionosphere. Furthermore, the timing of other field and particle signatures at Polar showed clear deviations from the onset time (≠ 2 min). This suggests that the sequence of these signatures around the onset time can be used to validate the signatures predicted by various substorm onset models

    The mercury imaging X-ray spectrometer (MIXS) on bepicolombo

    Get PDF
    The Mercury Imaging X-ray Spectrometer (MIXS) on the BepiColombo Mercury Planetary Orbiter (MPO) will measure fluorescent X-ray emission from the surface of Mercury in the energy range 0.5–7.5 keV, which is induced by incident solar X-rays and solar wind electrons and protons. These X-rays will reveal the elemental composition of the surface of Mercury and aid the determination of the planet's evolution. MIXS is a two component instrument. A collimated channel (MIXS-C) provides measurements on scales of 70–270 km, sufficient to separate the major Mercurian terrains. A second channel (MIXS-T) is the first imaging X-ray telescope for planetary remote sensing and will make measurements on spatial scales of less than 10 km for major elements during solar flares, sufficient to isolate surface landforms, such as craters and their internal structures. The spatial resolution achieved by MIXS-T is made possible by novel, low mass microchannel plate X-ray optics, in a Wolter type I optical geometry. MIXS measurements of surface elemental composition will help determine rock types, the evolution of the surface and ultimately a probable formation process for the planet. In this paper we present MIXS and its predicted performance at Mercury as well as discussing the role that MIXS measurements will play in answering the major questions about Mercury
    corecore