574 research outputs found

    Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 243 (2006): 74-84, doi:10.1016/j.epsl.2006.01.027.Although it is widely believed that production of organic compounds by Fischer-Tropsch synthesis and related processes occurs in many geologic environments, unambiguous identification of compounds with an abiotic origin in natural samples has been hampered by a lack of means to discriminate between abiotic compounds and organic matter from biological sources. While isotopic compositions might provide a means to discriminate between biologic and non-biologic sources of organic matter, there are few data presently available to constrain the isotopic composition of compounds produced by abiotic processes in geologic systems. Here, we report results of laboratory experiments conducted to evaluate the isotopic composition of organic compounds synthesized abiotically under hydrothermal conditions. We find the organic products are depleted in 13C to a degree typically ascribed to biological processes, indicating that carbon isotopic composition may not be a particularly effective diagnostic means to differentiate between biologic and non-biologic sources. Furthermore, our results suggest that the isotopic compositions of reduced carbon compounds found in many ancient rocks that have heretofore been attributed to biological sources could be consistent with an abiotic origin in a hydrothermal setting.This research supported by the Earth Sciences Directorate of the US National Science Foundation (Grant # OCE-0241579)

    Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 156 (2015): 122-144, doi:10.1016/j.gca.2015.02.022.The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Sample were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12 n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.This research was supported by the NSF Ocean Sciences directorate through grants MGG-OCE 0550800 to T.M.M. and MGG-OCE 0549829 to J.S.S. and C.R.G

    Origin of the magnetic-field dependence of the nuclear spin-lattice relaxation in iron

    Get PDF
    The magnetic-field dependence of the nuclear spin-lattice relaxation at Ir impurities in Fe was measured for fields between 0 and 2 T parallel to the [100] direction. The reliability of the applied technique of nuclear magnetic resonance on oriented nuclei was demonstrated by measurements at different radio-frequency (rf) field strengths. The interpretation of the relaxation curves, which used transition rates to describe the excitation of the nuclear spins by a frequency-modulated rf field, was confirmed by model calculations. The magnetic-field dependence of the so-called enhancement factor for rf fields, which is closely related to the magnetic-field dependence of the spin-lattice relaxation, was also measured. For several magnetic-field-dependent relaxation mechanisms, the form and the magnitude of the field dependence were derived. Only the relaxation via eddy-current damping and Gilbert damping could explain the observed field dependence. Using reasonable values of the damping parameters, the field dependence could perfectly be described. This relaxation mechanism is, therefore, identified as the origin of the magnetic-field dependence of the spin-lattice relaxation in Fe. The detailed theory, as well as an approximate expression, is derived, and the dependences on the wave vector, the resonance frequency, the conductivity, the temperature, and the surface conditions are discussed. The theory is related to previous attempts to understand the field dependence of the relaxation, and it is used to reinterpret previous relaxation experiments in Fe. Moreover, it is predicted that the field dependences of the relaxation in Fe and Co, on one side, and in Ni, on the other side, differ substantially, and it is suggested that the literature values of the high-field limits of the relaxation constants in Fe are slightly too large

    Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 2073-2092, doi:10.1016/j.gca.2006.01.015.Hydrothermal vent fluids from Middle Valley, a sediment-covered mid-ocean ridge on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186 to 281°C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2+C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low-temperature regions during recharge) as well as from thermogenic processes in higher-temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and indicate that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low-salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower-temperature fluids.This work was funded by NSF OCE-9906752

    Electric quadrupolar contribution to the nuclear spin-lattice relaxation of Ir in Fe

    Get PDF

    Genus-Specific Carbon Fixation Activity Measurements Reveal Distinct Responses to Oxygen among Hydrothermal Vent Campylobacteria

    Get PDF
    Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (previously Epsilonproteobacteria) often dominate the microbial community and that three genera, Arcobacter, Sulfurimonas, and Sulfurovum, frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (similar to 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances. IMPORTANCE Sulfidic environments worldwide are often dominated by sulfur-oxidizing, carbon-fixing Campylobacteria. Environmental factors associated with this group's dominance are now understood, but far less is known about the ecology and physiology of members of subgroups of chemoautotrophic Campylobacteria. In this study, we used a novel method to differentiate the genus-specific chemoautotrophic activity of three subtypes of Campylobacteria. In combination with evidence from microscopic counts, chemical consumption/production during incubations, and DNA-based measurements, our data show that oxygen concentration affects both community composition and chemoautotrophic function in situ. These results help us better understand factors controlling microbial diversity at deep-sea hydrothermal vents, and provide first-order insights into the ecophysiological differences between these distinct microbial taxa

    Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 223 (2018): 141-158, doi:10.1016/j.gca.2017.11.030.Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (ÎŁCO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a “clumped” isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310−42 +53 °C, with no apparent relation to the wide range of fluid temperatures (96 to 370 °C) and chemical compositions (pH, [H2], [ÎŁCO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270 to 360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water-rock reactions occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at mid-ocean ridge hot springs.Financial support from the U.S. National Science Foundation (NSF awards EAR-1250394 to S.O., and OCE-1061863 and OCE-0549829 to J.S.S.), the National Aeronautics and Space Administration (NASA) (NNX-327 09AB75G to J.S.S., and the NASA Astrobiology Institute “Rock- Powered Life” project under cooperative agreement NNA15BB02A to S.O.), the Alfred P. Sloan Foundation via the Deep Carbon Observatory (to S.O. and J.S.S.), the U.S. Department of Defense (DoD) through a National Defense Science & Engineering Graduate (NDSEG) Fellowship (to D.T.W.), a Shell-MIT Energy Initiative Fellowship, and the Kerr-McGee Professorship at MIT (to S.O.) is gratefully acknowledged

    Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9°50â€ČN

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 125 (2018): 41-49, doi:10.1016/j.orggeochem.2018.08.004.Deep-sea hydrothermal vents are unique ecosystems that may release chemically distinct dissolved organic matter to the deep ocean. Here, we describe the composition and concentrations of polar dissolved organic compounds observed in low and high temperature hydrothermal vent fluids at 9°50’N on the East Pacific Rise. The concentration of dissolved organic carbon was 46 ÎŒM in the low temperature hydrothermal fluids and 14 ÎŒM in the high temperature hydrothermal fluids. In the low temperature vent fluids, quantifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. The low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of biological activity in the subseafloor. These compounds may fuel heterotrophic and other metabolic processes at deep-sea hydrothermal vents and beyond.This project was funded by a grant from WHOI’s Deep Ocean Exploration Institute and WHOI’s Ocean Ridge Initiative (to EBK and SMS) and by NSF OCE-1154320 (to EBK and KL), OCE- 1136727 (to SMS and JSS), and OCE 1131095 (to SMS)

    Abiotic redox reactions in hydrothermal mixing zones: decreased energy availability for the subsurface biosphere

    Get PDF
    © The Author(s), 202. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McDermott, J. M., Sylva, S. P., Ono, S., German, C. R., & Seewald, J. S. Abiotic redox reactions in hydrothermal mixing zones: decreased energy availability for the subsurface biosphere. Proceedings of the National Academy of Sciences of the United States of America, 117(34), (2020): 20453-20461, doi:10.1073/pnas.2003108117.Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.Financial support was provided by the National Aeronautics and Space Administration (NASA) Astrobiology program (Awards NNX09AB75G and 80NSSC19K1427 to C.R.G. and J.S.S.) and the NSF (Award OCE-1061863 to C.R.G. and J.S.S.). Ship and vehicle time for cruise FK008 was provided by the Schmidt Ocean Institute. We thank the ROV Jason II and HROV Nereus groups, and the captain, officers, and crew of R/V Atlantis (AT18-16) and R/V Falkor (FK008) for their dedication to skillful operations at sea. We thank our scientific colleagues from both cruises, as well as Meg Tivey, Frieder Klein, and Scott Wankel for insightful discussions. We are grateful to the editor and two anonymous reviewers for providing helpful comments and suggestions
    • 

    corecore