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The magnetic-field dependence of the nuclear spin-lattice relaxation at Ir impurities in Fe was measured for
fields between 0 and 2 T parallel to the �100� direction. The reliability of the applied technique of nuclear
magnetic resonance on oriented nuclei was demonstrated by measurements at different radio-frequency �rf�
field strengths. The interpretation of the relaxation curves, which used transition rates to describe the excitation
of the nuclear spins by a frequency-modulated rf field, was confirmed by model calculations. The magnetic-
field dependence of the so-called enhancement factor for rf fields, which is closely related to the magnetic-field
dependence of the spin-lattice relaxation, was also measured. For several magnetic-field-dependent relaxation
mechanisms, the form and the magnitude of the field dependence were derived. Only the relaxation via
eddy-current damping and Gilbert damping could explain the observed field dependence. Using reasonable
values of the damping parameters, the field dependence could perfectly be described. This relaxation mecha-
nism is, therefore, identified as the origin of the magnetic-field dependence of the spin-lattice relaxation in Fe.
The detailed theory, as well as an approximate expression, is derived, and the dependences on the wave vector,
the resonance frequency, the conductivity, the temperature, and the surface conditions are discussed. The theory
is related to previous attempts to understand the field dependence of the relaxation, and it is used to reinterpret
previous relaxation experiments in Fe. Moreover, it is predicted that the field dependences of the relaxation in
Fe and Co, on one side, and in Ni, on the other side, differ substantially, and it is suggested that the literature
values of the high-field limits of the relaxation constants in Fe are slightly too large.

DOI: 10.1103/PhysRevB.77.104433 PACS number�s�: 76.60.Es, 75.50.Bb, 75.30.Ds, 76.80.�y

I. INTRODUCTION

The magnetic-field dependence of the nuclear spin-lattice
relaxation in Fe, Co, and Ni had been an unsolved problem
for more than 30 years.1–3 The effect typically manifests it-
self at low applied magnetic fields by relaxation rates that are
2–10 times larger than in the high-field limit, which is essen-
tially reached within applied fields of the order of 1 T. Since
there is a close relation between the spin-lattice relaxation
and low-frequency magnetic-moment fluctuations,4,5 the lack
of an explanation would point to a fundamental deficiency in
our understanding of the moment fluctuations in Fe, Co, and
Ni. This was the motivation to obtain more information on
the effect.

A phenomenological description of the effect had been
proposed by Kopp and Klein: According to their enhance-
ment factor model �EFM�, the field-dependent part of the
spin-lattice relaxation is proportional to the square of the
NMR enhancement factor.6 In this way, the magnetic-field
dependence of the relaxation is attributed to the magnetic-
field dependence of the enhancement factor. The EFM pro-
vided a description of the field dependence of the relaxation
in polycrystalline samples,6,7 and it was consistent with the
main features of the field dependence in single-crystal

samples, in particular, with the occurrence of peaks for cer-
tain directions of the magnetic field.2

However, a critical experimental test of the EFM was still
missing, because in polycrystalline samples, the field depen-
dence of the enhancement factor is not well known, and the
few relaxation experiments on single-crystal samples8,9 had
not been interpreted quantitatively by the EFM. In this work,
a single-crystal sample was used and the magnetic field was
applied along the �100� direction. The field dependence of
the enhancement factor is well known for that geometry.
Moreover, it was also determined experimentally. This en-
abled us to establish the actual relationship between the re-
laxation and the enhancement factor. It turned out to differ
from the postulated quadratic dependence on the enhance-
ment factor.

In context with the field dependence of the spin-lattice
relaxation in Fe, Co, and Ni, several relaxation mechanisms
had been discussed, but none of those could explain the
effect.1,8,10–12 It had been speculated that this failure might
not be due to the inadequacy of the proposed relaxation
mechanisms, but due to an incomplete knowledge of the
magnetization behavior, the band structure, or the spin-wave
dispersion.9,13,14 The precise data and the close examination
of those mechanisms in this work show, however, that those
speculations are not true. In contrast, it turns out that an
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important mechanism has been ignored so far, the relaxation
via eddy currents and Gilbert damping. The theory of this
relaxation mechanism is derived and it is shown that it can
explain the observed field dependence.

Since the reliability of relaxation measurements by
nuclear magnetic resonance on oriented nuclei �NMR-ON�,
the technique that was used in this work, had been ques-
tioned in the past,3,7,14 the theory of NMR-ON was also re-
examined. In particular, the practice to use transition rates to
describe the effect of a coherent rf field on the sublevel
populations had been doubted. Therefore, model calculations
that showed under which conditions that practice is justified
were performed. In addition, the reliability of the technique
was tested by measurements at different rf-field strengths.

The relaxation measurements were performed on radioac-
tive 186Ir and 189Ir nuclei, which were coimplanted into the
Fe sample. One part of the experiment, the determination of
the electric-quadrupolar contribution to the relaxation by the
comparison of the relaxations of both isotopes, was already
treated in Ref. 15. The present work is mainly concerned
with the form and the magnitude of the field dependence of
the relaxation, which were deduced from the data on 186Ir.

II. ENHANCEMENT FACTOR

The NMR enhancement factor � in ferromagnets is de-
fined as the ratio of the effective rf magnetic field at the
nuclear site to the applied rf field.16 It takes into account that
the magnetization and the hyperfine field are slightly dis-
placed toward the instantaneous direction of the rf field. The
resulting transverse component of the hyperfine field acts at
the nuclear site as an additional rf field, which is much larger
than the applied rf field. It can be shown that

� = 1 +
BHF

B�

�
BHF

B�

, �1�

where BHF is the hyperfine field and B� is the effective field
that holds the magnetization in its equilibrium position. An
appropriate expression to calculate B� as a function of the
applied magnetic field Bext is given in Refs. 8 and 17.

Within the EFM of Ref. 6, the relaxation rate R is the sum
of a high-field limit and a field-dependent contribution that is
proportional to �2. To increase the flexibility of the model,
we assume that the latter contribution is proportional to ��,
where the exponent � is not necessarily 2:

R�Bext� = R��� + �R�0� − R�������Bext�
��0� ��

. �2�

The original idea behind the EFM was that the internal
fields that are responsible for the field-dependent part of the
relaxation are similarly enhanced as the rf field. The weak
point of that idea was that those internal fields had never
been specified. Nevertheless, it makes sense to try to de-
scribe the field dependence in terms of �, since � can be
viewed just as a synonym of B�

−1. In this sense, � is relevant
for the long-wavelength magnetic excitations of the system
in several ways: For example, � is essentially equivalent to
the transversal susceptibility, which describes the displace-

ment of the magnetization in response to forces that act on
the magnetization as a whole. However, � is also inversely
proportional to the lowest frequency of the spin-wave spec-
trum.

In this work, the magnetic field was applied along the
�001� direction in the �110� plane of a Fe single-crystal disk.
The rf field was also applied within the sample plane. For
that geometry, B� is well known:

B� = Ba for Bext � Bdem
�0� ,

B� = Ba + Bext − Bdem
�0� for Bext � Bdem

�0� . �3�

Here, Ba is the anisotropy field �0.059 T in Fe� and Bdem
�0� is

the magnitude of the demagnetization field for the fully mag-
netized sample.

The independence from Bext for Bext�Bdem
�0� is due to the

shielding of Bext by the demagnetization field: The shielding
is complete during the magnetization of the sample when the
domains with the magnetization parallel to Bext grow at the
expense of the other domains. The magnetization of the
sample is completed at Bext=Bdem

�0� , which thus marks the
transition from the multidomain to the one-domain regime.

Two features of Eqs. �1� and �3� deserve special attention.
First, the frequency dependence of � is neglected, because
the relevant electronic resonance frequency, which is of the
order of

��e/2���B�4�M�1/2 	 10.6 GHz,

is much larger than the frequencies applied in this work.
Second, to obtain the correct dependence on Bdem

�0� , it must be
taken into account that, due to the skin effect, the magneti-
zation M is displaced by the rf field only in a very thin
surface layer. The demagnetization field in that layer is not
displaced, since it originates largely from the rest of the
sample. Therefore, the demagnetization field of the undis-
turbed sample acts on M of the surface layer like an external
field. This gives in the end the dependence on Bdem

�0� of
Eq. �3�.

III. FIELD-DEPENDENT RELAXATION MECHANISMS

Spin-lattice relaxation rates in metals are specified by the
reciprocal value of the Korringa constant, R= �T1T�−1. Usu-
ally, the dominant relaxation mechanism is the scattering of
conduction electrons via the hyperfine interaction at the
nuclear site,18,19 and R is magnetic-field independent, be-
cause the involved matrix elements and densities of states are
practically field independent. In this section, we discuss sev-
eral mechanisms by which the ferromagnetism can introduce
a field dependence. They have in common that they arise
from the coupling of the nuclear spin to the magnetization
vector. Since, in this case, the susceptibility formalism
proves to be convenient, it is discussed first.

A. Susceptibility formalism

1. Formalism

Within the susceptibility formalism,4,11,20
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R =
kB




K2


�n�
�e�2

2V

�2��3 � Im���q,�n��d3q . �4�

Here, K is the coupling constant between the nuclear and the
electronic spins, ��q ,�� is the transversal dynamical suscep-
tibility in units of the induced magnetic moment per atom
and magnetic-field unit, V is the volume per atom, �e is the
gyromagnetic ratio of the electron spins, and �n is the
nuclear precession frequency.

The magnitude of �n is 2�n and the sign is given by

sgn��n� = − sgn�BHF�sgn��n� , �5�

whereas the nuclear resonance frequency n is defined in this
work as a positive quantity. �n is the nuclear gyromagnetic
ratio. In connection with the sign of �n, it should be noted
that the decisive sign is

sgn��n�e� = − sgn�BHF�sgn��n�sgn��e� , �6�

which is negative if the nuclear and the electronic spins pre-
cess in the same sense and positive if they precess in the
opposite sense.

If several different coupling constants and electronic mag-
netic moments contribute to the spin-lattice relaxation, each
contribution is given by an expression of the form of Eq. �4�.
In this section, almost exclusively the contribution from the
coupling to the magnetization vector via the static hyperfine
interaction is discussed. Rsw denotes the respective contribu-
tion to the relaxation constant. The coupling constant in the
case of Rsw is the static hyperfine coupling constant11,21,22

K = �
�HF�/S � �
�n�/S , �7�

where S= �MV� / �
	�e	� is the electronic spin and �HF is the
precession frequency due to the static hyperfine field. For
simplicity, in this context, �HF is approximated by �n, as-
suming BHF�Bext. This is a good approximation for ferro-
magnetic transition metals, where the hyperfine fields are of
the order of 10–100 T. The susceptibility in the case of Rsw,

��q,�� = 
	�e	S
1

2

 �

�bx�
+ i

�

�by�
�mx − imy

M
, �8�

describes the displacement of the magnetization in response
to a small, complex, space- and time-periodic, transversal
field b� that is proportional to exp�iqr− i�t�. Here, mx and
my are the transversal components of the displaced magneti-
zation, which are also proportional to exp�iqr− i�t�.

� is obtained from the linearized equation of motion of m,
which turns out to be of the form

d

dt

mx

M
= + �x

my

M
− �eby�,

d

dt

my

M
= − �y

mx

M
+ �ebx�. �9�

This equation has the solution

mx

M
=

�x�ebx� + i��eby�

�x�y − �2 ,

my

M
=

− i��ebx� + �y�eby�

�x�y − �2 . �10�

Combining Eqs. �4�, �7�, �8�, and �10�, one obtains

Rsw =
kB�nV


S�2��3 sgn��e� � Im��x + �y − 2�n

�x�y − �n
2 �d3q ,

�11�

where �x and �y are functions of q and �=�n.
In this way, the susceptibility formalism relates all relax-

ation mechanisms that arise from the coupling to the magne-
tization vector to the equation of motion of the magnetiza-
tion. Note that this equation is naturally closely related to the
spin-wave spectrum, since displacements of the magnetiza-
tion that are proportional to exp�iqr− i�t� are just spin
waves. The problem is now to find the equation of motion.

2. Equation of motion of the magnetization

The magnetization precesses around an effective field that
is the sum of the magnetic field B, the anisotropy field Ba,
the exchange field, internal fields b�j� due to the coupling to
other excitation modes, and b�:

d

dt
M = �eM � 
B + Ba +

D�M


	�e	M
+ �

j

b�j� + b�� , �12�

where D is the spin-wave stiffness constant. This equation
must be solved together with Maxwell’s equations and the
equations of motion of the other excitation modes.

If the two explicitly time-dependent Maxwell equations
are combined and the displacement current is neglected, one
obtains

− �B +
4��

c2

d

dt
B = 4��− �M + ���M�� , �13�

where � is the conductivity. Since b� describes the hyperfine
interaction acting on the electron spin, it is not a “true” mag-
netic field and does not appear in Maxwell’s equations. To
linearize the equation of motion, M and B are decomposed
into large, static, and uniform z components and small trans-
versal components m and b, which are proportional to
exp�iqr− i�t�. The longitudinal components are approxi-
mately given by

Mz = M, �B + Ba�z = B� + 4�M . �14�

b and m are related by Eq. �13�. Making use of the period-
icities of those quantities, one obtains

bx = 4�mx
q2�2 cos2 �

q2�2 − 2i sgn���
,

by = 4�my
q2�2

q2�2 − 2i sgn���
, �15�

where � is the skin depth:
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� =
c

�2��	�	�1/2 . �16�

� is the angle between q and the direction of the magnetiza-
tion, and x denotes the transversal component parallel to q,
which gives

qx = q sin �, qy = 0, qz = q cos � . �17�

If Eqs. �12�, �14�, and �15� are combined, and if only
terms of first order in m are retained, one obtains the linear-
ized equation of motion �9� with the parameters

�x = �x
�0� + �

j

�x
�j�,

�y = �y
�0� + �

j

�y
�j�. �18�

Here,

�x
�0� = �e
B� +

Dq2

	�e	

� ,

�y
�0� = �e
B� + 4�M sin2 � +

Dq2

	�e	

� �19�

are the parameters without eddy-current damping and cou-
pling to other excitation modes. One set of ��j�’s,

�x
�ed� = �e4�M

2

2 + i sgn����2q2 ,

�y
�ed� = �e4�M

2�cos ��2

2 + i sgn����2q2 , �20�

are the contributions from the eddy-current damping. The
other ��j�’s are related to the internal fields from other exci-
tation modes by

�x
�j� = − �e

M

my
by

�j�,

�y
�j� = − �e

M

mx
bx

�j�. �21�

In Fe, D=280 meV Å2, �e=184 GHz T−1, 4�M
=2.219 T, V=11.7 Å3, and S=1.06.23 The expressions for
�x

�0� and �y
�0� are well known from treatments of the spectrum

of the spin-wave resonance frequencies,24–26 which are given
by

��x
�0��y

�0��1/2

2�
.

Note the dependence of �x
�0� and �y

�0� on B�. It is the source
of the field dependence of the spin-lattice relaxation for all
the relaxation mechanisms that are discussed below. Also
note that, in general, �x

�0���y
�0� due to the demagnetization

fields of the spin waves in the x direction. As a result, the
precession of the magnetization is, in general, elliptic.

The expressions for �x
�ed� and �y

�ed� should be comple-
mented by the q dependence of �, since � and � become q

dependent, when the wavelength becomes shorter than the
mean free path � of the conduction electrons. � and � are
given in terms of the normal conductivity �0 and the normal
skin depth �0, which represent the limit �q�1, by the fol-
lowing relation, which is well known from treatments of the
anomalous skin effect:27,28

�

�0
=

�0
2

�2 =
3

2��q�2�1 + ��q�2�
arctan��q�

�q
− 1� . �22�

At this point, it is also useful to introduce the length
scales �m and ld. �m

−1 is defined as that q that fulfills the
relation

q� = 
8�M

B�
�1/2

. �23�

�m can be interpreted as an effective rf penetration depth that
takes the magnetic permeability into account. For q�m�1,
the eddy-current term is a small modification of the equation
of motion of the magnetization; for q�m�1, it dominates
that equation.

ld = 
 D


	�e	B�
�1/2

�24�

is a typical length scale of spatial variations of the direction
of the magnetization, as they occur, for example, at domain
walls. �x

�0� and �y
�0� are independent of q for qld�1 and are

proportional to q2 for qld�1. Usually, ld��m. For example,
for B�=0.059 T and the parameters that are used in this work
to describe the relaxation of 186IrFe, typical numbers are
�m=0.14 �m and ld=0.020 �m.

3. Virtual excitation of spin waves

If n lies within the spin wave resonance spectrum, the
nuclear spins can emit and absorb spin waves. This relax-
ation mechanism is discussed in Sec. III B. In contrast, if n
is smaller than the lowest spin-wave resonance frequency,
only a virtual excitation of spin waves takes place, which can
be viewed as a dynamic displacement of the magnetization in
the vicinity of the nuclear spin or as an admixture of spin
waves to the magnetic sublevels of the nuclear spin. It con-
tributes to the relaxation, if the virtually excited spin waves
decay to some other excitation mode that can be excited at
n. This relaxation mechanism can be viewed in different
ways: �i� It can be viewed as an excitation of the final exci-
tation mode, where the virtual excitation of spin waves acts
as an additional, indirect coupling between the nuclear spins
and that mode. �ii� It can be viewed as an excitation of spin
waves, where the spin-wave resonance spectra are broadened
by the decay of the spin waves to the final excitation mode
so that the tails of the spectra extend down to n. �iii� Within
the susceptibility formalism, the equation of motion of the
magnetization is modified by the coupling of the spin waves
to the final excitation mode in such a way that the imaginary
part of the susceptibility no longer vanishes at n.

Since there are several decay modes of the spin waves,
several relaxation mechanisms via the virtual excitation of
spin waves can be distinguished. To find potentially relevant
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decay modes, one can proceed in different ways: In previous
work, it was looked for excitations that couple to the spin
waves and that have a resonance spectrum that extends down
to zero. The obvious elementary excitations in this context
are sound waves and various single electron-hole excitations.
The relaxation via the indirect coupling to those excitations
is discussed in Secs. III C and III D, respectively. As an al-
ternative approach, in this work, we also consider the equa-
tion of motion that is commonly used to describe the ferro-
magnetic resonance. That equation contains two damping
terms, the eddy-current and the Gilbert damping. The relax-
ation via those terms is discussed in Secs. III E and III F,
respectively.

4. Approximations

The integrand of Eq. �11�,

F = Im��x + �y − 2�n

�x�y − �n
2 � ,

can often be simplified. One starting point is the observation
that, often, the ��j�’s are small with respect to the ��0�’s, or,
as far as the real parts are concerned, are already taken into
account by the ��0�’s, since they are contained in the experi-
mental values of �e, Ba, and D. In the case of the relaxation
via the real excitation of spin waves, the consequence is that
the density of spin-wave states at �n is not decisively
changed by the ��j�’s. The ��j�’s essentially only ensure that
the imaginary parts of �x and �y do not vanish, but the exact
form of those imaginary parts is not decisive. In this case, it
is a good approximation to assume

�x � �x
�0� − i sgn��n�e��x,

�y � �y
�0� − i sgn��n�e��y , �25�

where �x and �y are arbitrarily small positive numbers. Tak-
ing the limit �x, �y→0, one obtains

F � 2� sgn��n�e�����x
�0��y

�0��1/2 − 	�n	�ca
2, �26�

where ��¯� denotes the � function and not the skin depth,
and

ca =
1

2
�
�x

�0�

�y
�0��1/4

− sgn��n�e�
�y
�0�

�x
�0��1/4� . �27�

In the case of the relaxation via the virtual excitation of
spin waves, the nonvanishing spin-wave density of states at
�n is due to the ��j�’s. In this case, the form of the Im���j��’s
is decisive and must be taken into account. However, one can
at least expand the real and the imaginary parts in the nu-
merator and the denominator of F into powers of ��j� /��0�

and retain only the lowest nonvanishing order. The result is

F � �
j

− cx
2 Im��x

�j�� − cy
2 Im��y

�j��
��x

�0��2 , �28�

where

cx =
�x

�0���y
�0� − �n�

�x
�0��y

�0� − �n
2 ,

cy =
�x

�0���x
�0� − �n�

�x
�0��y

�0� − �n
2 . �29�

Whether the condition ��j����0� is fulfilled depends on
the ��j�’s and on q. For q�m�1, it is not fulfilled, because
��ed� is of the order of or larger than ��0�. However, for
q�m�1, it is fulfilled, at least for the spin-wave damping
mechanisms and parameters that are considered in this work,
and Eqs. �26� and �28� are expected to be good approxima-
tions.

Further possibilities to simplify F concern the coefficients
cx and cy in Eq. �28�. For many isotopes in Fe, it is a good
approximation to take the limit �n��x

�0�, which leads to

cx � 1, cy �
�x

�0�

�y
�0� . �30�

However, for the relatively high resonance frequency of
186IrFe in this work, deviations of the order of several per-
cent are expected. A further simplification can be achieved, if
one takes the limit �n��x

�0���y
�0�, which leads to

cx � 1, cy � 0. �31�

That limit applies only in the range qld�1 and sin2 �
�B� / �4�M�, which is, however, responsible for a major
part of the field dependence of the relaxation. Since it sim-
plifies the discussion considerably, this approximation may
also be applied beyond that range, but deviations from the
exact result of the order of several percent are then to be
expected. A further limit of interest is �n��x

�0���y
�0�, where

cx � cy � 1, �32�

because it is a good approximation for qld�1, that is, for the
vast majority of the wave vectors.

When the formalism is applied to the spin-lattice relax-
ation of impurity isotopes, the question arises to which ex-
tent the modifications of the solid-state properties in the vi-
cinity of the impurity must be taken into account. The
answer follows from the involved length scales: The range of
the modifications is typically of the order of a lattice constant
or less. In contrast, the wave vectors that are responsible for
the field dependence of Rsw are of the order of ld

−1 or less,
which corresponds to an effective range of the relevant in-
teraction between the nuclear spin and the lattice of the order
of ld or larger. The interaction thus takes place essentially in
the host and is expected to be only little affected by the
impurity. Accordingly, the ��0�’s and ��j�’s are approximated
in this work by their values in the undisturbed host. Rsw
depends on the impurity only via the hyperfine coupling con-
stant �
�n� /S.

B. Excitation of spin waves

If the nuclear resonance frequency n lies within the range
of the spin-wave resonance frequencies, Rsw is essentially
due to the following mechanism: The nuclear spins emit and
absorb spin waves. In this work, a contribution from this
relaxation mechanism can be excluded, since the lowest
spin-wave frequency, ��eBa� / �2��=1.72 GHz, was much
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larger than n. Nevertheless, the mechanism is of interest,
since under special conditions, much smaller spin-wave fre-
quencies can occur.8

If it is assumed that the majority of the wave vectors of
the emitted spin waves are much larger than �m

−1, which
should be a good approximation in many cases, Eqs. �11� and
�26� can be combined to

Rsw =
kB4�2n

S
� Vca

2

�2��3

����x

�0��y
�0��1/2 − 	�n	�d3q ,

�33�

where ca is given by Eq. �27�. Without the factor ca
2, which

arises from the ellipticity of the precession of the magneti-
zation, the integral is just the density of spin-wave states at
hn. Since, often, relaxation constants are derived via Fer-
mi’s golden rule instead of via the susceptibility formalism,
we mention that, in this case, the ellipticity of the precession
of the magnetization must already be taken into account
when the spin waves are quantized. Otherwise, the factor ca

2

is not reproduced.
To estimate the expected order of magnitude, Rsw was

calculated according to Eq. �33� for B�=0, the most favor-
able case, and n=0.79 GHz of 186IrFe. The result Rsw
=3.55�103 �s K�−1 is about 400 times larger than R��� for
that system. This shows that, if n lies within the spin-wave
resonance frequencies, Rsw increases the relaxation by orders
of magnitude. That increase is strongly field dependent, since
this is the case at all only for special choices of the direction
and the magnitude of Bext.

8

C. Excitation of sound waves

In this section, the following relaxation mechanism is dis-
cussed: The nuclear spins virtually excite spin waves, which,
in turn, decay via the excitation of sound waves. Rph denotes
the respective contribution to the relaxation constant. This
mechanism can also be described in terms of the mixing of
sound and spin waves in ferromagnets by the
magnetostriction:22,29,30 The coupling of the nuclear spin to
the spin-wave component of the sound-wave-like mode leads
to spin-lattice relaxation via the excitation of the sound-
wave-like modes.

To derive Rph within the susceptibility formalism, one has
to solve the coupled equations of motion of the amplitude m
of the displacement of the magnetization, which is propor-
tional to exp�iqr− i�t�, and of the amplitude u of the dis-
placement of the atoms, which is also proportional to
exp�iqr− i�t�. The equation of motion of u is assumed to be
of the form

A
d2

dt2u = − �Av2q2�u − �
d

dt
u + f , �34�

where A is the mass of the atom, v is the speed of sound, � is
an arbitrarily small positive number, and f is the force, which
is also proportional to exp�iqr− i�t�. For simplicity, it is as-
sumed that the velocity of sound is the same for all wave
vectors and polarizations.

Sound and spin waves are coupled by the magnetoelastic
energy, which is, for small displacements of the magnetiza-
tion from the �001� direction, of the form

B2�eyz�y + exz�x� , �35�

where B2 is the magnetoelastic coupling constant, the eij’s
are the components of the strain tensor, and the �i’s are the
direction cosines of the magnetization. As a result, u and m
are coupled by the following energy per atom:

Eme = − iqB2��u
y
* cos ��

my

M
+ �u

x
* cos � + u

z
* sin ��

mx

M
� .

�36�

It leads to the coupling of the equations of motion by the
following forces and fields:

f j = −
�Eme

�u
j
* , �37�

bj
�ph� = −

1

V
� �Eme

�mj
�*

. �38�

With the force from Eq. �37�, the solution of Eq. �34� is

uj =
�Eme/�u

j
*

A��2 − v2q2� + i��
. �39�

Combining Eqs. �36�, �38�, and �39�, one obtains b�ph� as a
function of m. Applying, in addition, Eq. �21� and MV
=
	�e	S, one obtains the following contribution of the sound
waves to the equation of motion of the magnetization:

�x
�ph� =

sgn��e�q2B2
2 cos2 �


S�A��2 − v2q2� + i���
,

�y
�ph� =

sgn��e�q2B2
2


S�A��2 − v2q2� + i���
. �40�

To obtain a compact expression of Rph, some additional
assumptions are necessary: Neglecting all other damping
mechanisms of the spin waves, all ��j�’s can be set equal to
zero with the exception of the ��ph�’s. Moreover, assuming
that the dispersion relation of the sound waves is not deci-
sively changed by the damping and the mixing with the spin
waves, one can take the limits �→0 and B2

2 / �Av2��
�x
�0�.

Finally, assuming that qld�1, the q→0 limit of the ��0�’s
can be used. If those approximations are applied together
with Eq. �11�, the result is

Rph =
kB2�2VB2

2hn
4


S2�
�eB��2Av5�
q→0

�cx
2 cos2 � + cy

2�
d�

4�
, �41�

where the integration is over all directions of q. In contrast to
similar expressions in the literature,22,29,30 Eq. �41� takes the
elliptic precession of the magnetization into account.

The decisive point is the magnitude of the effect.
In Fe, B2=0.57 meV and v ranges from 0.26 to 0.65
�106 cm s−1.23 For B�=0.059 T and n=0.79 GHz of
186IrFe, the prefactor in front of the integral in Eq. �41�
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ranges from 4.1�10−5 to 4.3�10−3 �s K�−1. This is more
than 3 orders of magnitude smaller than R��� of 186IrFe.
Since the integral is of the order of unity, Rph is a negligible
contribution to the spin-lattice relaxation. This conclusion
has already been drawn in Ref. 1, although without explicit
derivation. An examination of the numerical factors shows
that this result is less due to the weakness of the magneto-
elastic coupling than due to the small sound-wave density of
states at small q’s as a result of the linear dispersion relation.

It should be added that two of the assumptions that were
used to derive Eq. �41� are not good approximations. First, a
uniform velocity of sound was assumed, although there is a
distinct dependence of v on the polarization and the propa-
gation direction of the sound wave. The main effect of that
dependence is that, actually, the factor v−5 must be evaluated
for each polarization and wave vector separately and that the
different weighting of the polarizations must be taken into
account. Without detailed account of the sound-wave disper-
sion, only an upper and a lower limit of Rph can be obtained
by inserting the minimum and the maximum v into Eq. �41�.
Second, the neglect of the eddy-current damping is not jus-
tified. The wave vectors of the excited sound waves are in
the range q�m�1, where the eddy-current damping domi-
nates the dispersion relation of the spin waves. It can be
shown that Rph is actually considerably smaller than implied
by Eq. �41�, because the spin-wave amplitude is suppressed
by the eddy-current damping. Thus, Eq. �41� is useful to
present, in a compact expression, the decisive factors that are
responsible for the negligibility of Rph, but a more elaborate
expression would be needed to calculate Rph.

D. Indirect spin-wave mechanism

In this section, the following relaxation mechanism is dis-
cussed: The nuclear spins virtually excite spin waves, which,
in turn, decay via the scattering of conduction electrons. Rin
denotes the respective contribution to the relaxation constant.
This relaxation mechanism is known as the indirect spin-
wave mechanism, the Weger mechanism, or the second-order
spin-wave mechanism. It is the dominant contribution to the
spin-lattice relaxation in the rare earths.30 Its contribution to
the spin-lattice relaxation in Fe has been discussed in Refs.
1, 11, and 21. To make the relationship to the other contri-
butions to Rsw apparent, we rederive Rin within the formalism
that was developed in Sec. III A.

Since in transition metals the spin waves are excitations
of the conduction electrons, it is useful to remember that at
small �’s and q’s, the spin waves, as collective rotations of
all spins, can be well distinguished from the scattering of the
conduction electrons, which describes single electron-hole
excitations. To derive Rin within the susceptibility formalism,
one has to solve the coupled equations of motion of the
transverse magnetization m due to the spin waves and of the
transverse magnetization m�s� due to the single electron-hole
excitations. The equation of motion of m�s� is solved by

m�s� =
��s�

V
b�s�, �42�

where ��s� is the transversal susceptibility of the conduction
electrons and b�s� is the transversal field acting on m�s�. The
coupling energy per atom is of the form

−
JV2

�e�s

2mm�s�, �43�

where J is the coupling constant per unit of the involved
spins and �s is the gyromagnetic ratio of the conduction elec-
trons. With respect to this coupling term, the interaction via
the demagnetization field is negligible. The coupling gives
rise to the fields

b�s� =
JS

	�s	

m

M
,

b�in� =
JV

�e�s

2m�s�, �44�

where b�in� is the field acting on m.
If Eqs. �21�, �42�, and �44� are combined, one obtains the

following contribution of the scattering of the conduction
electrons to the equation of motion of m:

�x
�in� = �y

�in� = − sgn��e�
J2S

�s
2
3��s�. �45�

The respective contribution to the spin-lattice relaxation fol-
lows from Eqs. �11� and �28�, which is expected to be a good
approximation. The final result is

Rin =
kB�nJ2V


4�s
2�2��3 � cx

2 + cy
2

��x
�0��2 Im���s��d3q . �46�

A comparison with Eq. �4� shows that K is replaced in Eq.
�46� by the factor J��n /�x

�0��, which can thus be interpreted
as the q-dependent coupling constant of the indirect coupling
to the conduction electrons via the magnetization. The effec-
tive range of that indirect coupling follows from the q de-
pendence of �x

�0�: It is of the order of ld.
To calculate Rin, one has to know Im���s��, which, in turn,

requires a detailed knowledge of the band structure. Since
this is outside of the scope of this work, the magnitude of Rin
is left as an open problem. The estimates of Rin in Ref. 31 are
of little use, because they are unrealistic at least in the fol-
lowing two respects: First, those estimates are based on over-
estimates of the spin-lattice relaxation via the direct scatter-
ing of s electrons.31,32 Second, in the case of impurity
isotopes, those estimates are based on the assumption that
Im���s�� in Eq. �46� refers to the local susceptibility of the
conduction electrons at the impurity. However, since the in-
direct coupling to the conduction electrons takes place essen-
tially in the host, the appropriate Im���s�� is that of the un-
disturbed host.

Nevertheless, some conclusions are possible without cal-
culation. The decisive point in this work is the form of the
field dependence, which can already be deduced from

Rin �� Im���s��
��x

�0��2 d3q , �47�

where cx=1 and cy =0 was assumed for simplicity. Since �x
�0�

is appreciably field dependent only for small q’s, the knowl-
edge of the q dependence of Im���s�� in the limit q→0 and
�→0 is already sufficient in this context. Im���s�� is a mea-
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sure of the resonant absorption by the scattering of conduc-
tion electrons, if a field proportional to exp�iqr− i�t� is ap-
plied. Therefore, it is proportional to the available phase
space for the scattering and to the square of the matrix ele-
ment. For a given scattering mechanism and constellation of
the involved bands, the resulting q dependence can reason-
ably well be predicted. In the following, several scenarios are
discussed. Since the occurrence of small momentum trans-
fers is the prerequisite for an appreciable field dependence,
only the most favorable situations in this respect are consid-
ered.

�i� One scenario, the spin-flip scattering between bands
that are shifted in energy relative to each other by the ex-
change splitting, has already been discussed in Refs. 1, 11,
and 21: In this case, there is a minimum momentum transfer
qm. Im���s�� is proportional to q−1 for q�qm and zero for
q�qm. The field dependence is of the form

Rin �
1

B� + Bc
. �48�

The constant Bc is given in terms of the exchange splitting JS
and the gradient �� /�q of the electron energy dispersion at
the Fermi energy by

Bc =
D


�e

�JS�2

���/�q�2 . �49�

Without detailed knowledge of the band structure, the fol-
lowing can be said about Bc: If JS and ��� /�q� are of the
order of magnitude that can be expected for d bands in Fe, Bc
is of the order of 103 T. If nearly-free-electron bands are
involved, Bc can be much smaller: Assuming a free electron
energy dispersion, a Fermi energy of 8 eV,33 and JS
=0.15 eV,33 one obtains Bc=0.5 T. However, this estimate of
Bc is already rather a lower limit.

�ii� In the case of spin-flip scattering between bands with
intersecting Fermi surfaces, the available phase space ap-
proaches a nonzero value in the limit q→0. The matrix ele-
ment of the spin-flip operator may or may not vanish in the
limit q→0. In the latter case, Im���s�� is approximately con-
stant for small q’s. Applying Eq. �47�, it can be shown that in
this case, the field dependence is of the form Rin�B�

−1/2.
�iii� Scattering that involves a change of the orbital mag-

netic quantum number instead of a spin-flip can also contrib-
ute to Rin. However, the required coupling between the mag-
netization and the orbital moment cannot be the spin-orbit
coupling, since it must be an electron-electron interaction.
Instead, it may arise from the intra-atomic interaction be-
tween the orbital moment that is admixed to the magnetiza-
tion by the spin-orbit coupling and the orbital moment of the
scattered electron. The most favorable constellation is the
scattering into the same band. In this case, the available
phase space is proportional to q−1, whereas the square of the
matrix element of the orbital moment raising operator is pro-
portional to q2. As a result, Im���s���q. Applying Eq. �47�, it
can be shown that in this case,

Rin � log� Bc

B�
� , �50�

where Bc is at least of the order of 50 T.
For comparison, according to our measurements, the

field-dependent part of the spin-lattice relaxation can be well
described by a term that is proportional to B�

−�, where � is
close to 1.4, if B� is of the order of 0.1 T. This observed field
dependence is much stronger than any of the predicted field
dependences of Rin. Therefore, the conclusion is that the in-
direct spin-wave mechanism cannot explain the magnetic-
field dependence of the spin-lattice relaxation, at least not
with the scattering mechanisms and band structure constella-
tions that are known to us.

Finally, it should be mentioned that, for simplicity, our
derivation of the field dependence of the indirect spin-wave
mechanism neglects the following two effects, which may
somewhat modify the form of the field dependence: The el-
lipticity of the precession of the magnetization is neglected
by the assumptions cx=1 and cy =0. Moreover, in addition to
the contributions from the direct and from the indirect cou-
pling to the conduction electrons, the superposition of both
couplings also contributes to the spin-lattice relaxation. This
contribution, which is discussed in Refs. 1 and 11, is ne-
glected in this work. However, it can be shown that both
effects, at most, lead to an even weaker field dependence.
Our conclusion that the field dependence of the indirect spin-
wave mechanism is too weak is thus not affected.

E. Eddy-current damping

In this section, the following relaxation mechanism is dis-
cussed: The nuclear spins virtually excite spin waves, which,
in turn, induce eddy currents, which, in turn, decay via the
processes that are summarized by the term electrical resistiv-
ity. Red denotes the respective contribution to the relaxation
constant. The contribution of the eddy currents to the equa-
tion of motion of the magnetization has already been derived
in Sec. III A, where it is specified in terms of the ��ed�’s by
Eq. �20�. To obtain Red, one has to add the ��ed�’s to the
��0�’s, whereas the influence of other ��j�’s can be neglected,
because for q�m�1, all contributions to the relaxation add
independently, and for smaller q’s, the other ��j�’s are negli-
gible with respect to the ��ed�’s.

It follows that Red is given by Eq. �11� with

�x = �e
B� +
Dq2

	�e	

+ 4�M

2

2 + i sgn����2q2� ,

�y = �e
B� +
Dq2

	�e	

+ 4�M

2 + i sgn����sin ��2�2q2

2 + i sgn����2q2 � ,

�51�

where � is given as a function of q and �=�n by the Eqs.
�16� and �22�.

1. Approximate expression

To reproduce Red within 1%, the numerical evaluation of
the set of Eqs. �11�, �16�, �22�, and �51� is unavoidable. How-
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ever, a less involved, though only approximate expression
was also derived. To understand the used approximations, it
is useful to discuss first the q dependence of the integrand in
Eq. �11�. In the decisive range of q’s, that integrand is largely
given by Im��x

−1�, which is proportional to �q��2 for
q�m�1, passes through a maximum at q�m=1, and is pro-
portional to �q��−2�1+ �qld�2�−2 for q�m�1. It follows that
Red is mainly due to momentum transfers in the range
�m

−1�q� ld
−1.

The following three approximations were applied: First,
the integrand was approximated by Eq. �28�, the appropriate
expression for q�m�1, and was integrated from q�m=1 to
q=�. Second, cx=1 and cy =0 was assumed, which corre-
sponds to taking the limits �n��x

�0� and �x
�0���y

�0�. Third, �
was approximated by its expression in the limit q��1:

� � �0
3�

4�q
. �52�

This is justified for large resistivity ratios, the criterion being
���m.

If all three approximations are combined, Red can be ex-
pressed in closed form. For convenience, we give the final
result in terms of the numerical values of the involved quan-
tities:

Red � 6.18 � 10−3 V4�M

�	�e	/2��S
n

2

B�
2

�0

�

�log�2.73 � 105 �	�e	/2��
D�4�M�2/3

B�
5/3

n
2/3 
�0

�
�−2/3� − 1� .

�53�

This expression applies if R is expressed in �s K�−1, V in Å3,
4�M and B� in T, n in GHz, ��e /2�� in GHz T−1, D in
meV Å2, and ��0 /�� in ��� cm �m�−1. To examine the typi-
cal agreement of Eq. �53� with the exact expression, the re-
sults were compared for the parameter sets that were used in
this work to describe the relaxation of 186Ir. The deviation
was in all cases less than 10%.

2. Properties

In the following, the properties of the spin-lattice relax-
ation via the eddy-current damping are discussed. The first
property is the magnitude of the effect. It can be inferred
using Eq. �53�. The main uncertainty arises from �0 /�. That
parameter, which is independent of the mean free path, is
essentially the product of the mobility and the density of the
conduction electrons. It is an intrinsic property of the host.
Still, the best way to obtain a realistic estimate for Fe is to
consider the values for other metals: The order of magnitude
of �0 /� should be the same for transition metals as for other
metals, because the larger densities of electrons at the Fermi

energy are expected to be compensated by correspondingly
smaller mobilities. For Al, Sn, Cd, Pb, Cu, Ag, and Au, val-
ues of �0 /� between 5.7 and 20.4 ��� cm �m�−1 have been
reported.34 Assuming that �0 /� of Fe lies within that range,
Red=16–41 �s K�−1 is obtained from Eq. �53� for n
=0.79 GHz and B�=0.059 T, which applies to 186Ir in Fe at
zero applied field. This has to be compared with the observed
magnitude of the field-dependent part of the relaxation in
that case, R�0�−R���=24 �s K�−1. Red is thus of the right
order of magnitude to explain the field dependence of the
relaxation.

The second property that we discuss is the independence
from the impurity. Red depends only on properties of the host
and n, but not on the element to which the particular isotope
belongs or on the lattice site that it occupies. That indepen-
dence from the local electronic structure reflects the long
effective range of the interaction with the lattice, which also
manifests itself in the dominance of small momentum trans-
fers. However, it is not a distinctive feature of Red, since
every close relation between the relaxation and B�, a quan-
tity that describes the response of the system to macroscopic
perturbations, suggests a long-range interaction with the
electrons.

The third property that we discuss is the form of the
magnetic-field dependence. That dependence is actually a B�

dependence, since Bext enters only via that quantity. There is
a proportionality to B�

−2, which is, however, weakened by the
field dependences of �m and ld. That weakening, represented
by the B� dependence of the log term in Eq. �53�, increases
with decreasing magnetic field but also depends on the other
parameters. For example, for the parameters that were used
in this work, Red is proportional to B�

−1.47 at B�=0.059 T, to
B�

−1.59 at B�=0.12 T, and to B�
−1.75 at B�=1.0 T, if the field

dependence is described over small field ranges as a power
law in B�.

The fourth property that we discuss is the dependence on
the nuclear resonance frequency. Red is roughly proportional
to n

2. This corresponds to the usual scaling of the nuclear
spin-lattice relaxation with the square of the relevant hyper-
fine coupling constant, which is, in our case, the static hy-
perfine interaction.

However, there are also slight, but distinct deviations
from Red�n

2. Three effects can be distinguished in this re-
spect: First, the skin effect, which suppresses displacements
of the magnetization with wavelengths larger than �, is less
effective at smaller frequencies. Due to that effect, which
gives rise to the n dependence of the logarithmic term in Eq.
�53�, Red /n

2 increases with decreasing n. Second, the inte-
grand of Eq. �11� becomes almost singular at �n

2=�x
�0��y

�0�.
Therefore, Red /n

2 increases when 	�n	 approaches the range
of spin-wave precession frequencies at ��x

�0��y
�0��1/2. Third,

there is an asymmetry with respect to the sign of the fre-
quency: The relaxation is faster if the free precessions of the
nuclear and the electron spins have the same sense. The rela-
tive sense of those precessions was specified in terms of the
signs of �e, �n, and BHF in connection with Eq. �6�. The
combined effect of all three effects is illustrated in Fig. 1.

The fifth property that we discuss is the dependence on
the conductivity, which is the product of the host-specific
parameter �0 /� and the mean free path �, which varies with
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the temperature and the sample preparation. As can be seen
from Eq. �53�, the dependence of Red on �0 /� is essentially
given by a proportionality to �0 /�, which is only slightly
weakened by the �0 /� dependence of the logarithmic term.
This reflects that the relaxation is proportional to the eddy-
current damping, apart from small momentum transfers
�q��m

−1�, where the damping becomes so large that it sup-
presses the susceptibility.

The dependence on � is more complex, since the conduc-
tivity becomes independent of �, if � becomes larger than
the wavelength. Therefore, � must be compared with the
relevant length scales of the problem, ld and �m. As long as
�� ld, Red is largely proportional to �. In the range ld��
��m, the increase with � becomes ever weaker, and in the
opposite limit, ���m, Red is independent of �.

The resulting dependence of Red on � is shown in Fig. 2.
There, the resistivity ratio �0 /�0�300 K� serves as the mea-
sure of �. It can be seen that Red is rather insensitive to �, as
long as �0 /�0�300 K��30, which is fulfilled for well pre-
pared samples at low temperatures.

The sixth property that we discuss is the temperature de-
pendence. The usual proportionality of the spin-lattice relax-
ation in metals to T is already taken into account by the
definition of Red. Additional temperature dependences arise
from the temperature dependences of �, Ba, and D. Since the
last two parameters vary only weakly up to room tempera-
ture, the temperature dependence of Red is essentially deter-
mined by the temperature dependence of �. Accordingly, the
curve in Fig. 2 can also be viewed as a plot of the tempera-
ture dependence if �0�T� /�0�300 K� is interpreted as a mea-
sure of T.

The basic effect is that � and Red decrease with increasing
temperature. However, due to the insensitivity of Red to � at
high resistivity ratios, the decrease of Red sets in later than
the decrease of �. Taking the example of Fig. 2, the onset of
an appreciable temperature dependence of Red is expected at
�0�T� /�0�300 K��30, which corresponds to T�65 K.35 At
room temperature, Red is already reduced by more than a
factor of 5.

The last property that we discuss is the influence of the
surface. Surface effects come into play when the distance to
the surface becomes smaller than the skin depth, which is
necessarily the case with NMR measurements. They arise
because additional magnetic surface anisotropy terms and the
missing magnetic volume anisotropy at the other side of the
surface modify the susceptibility, and because the truncation
of the free path of the conduction electrons at the surface
modifies the conductivity. We do not give a detailed treat-
ment because the required mathematical techniques, such as
the Wiener-Hopf technique,27 are beyond our scope. More-
over, decisive parameters, such as the magnetic surface an-
isotropy, are, in general, not known.

However, several general conclusions can already be
drawn assuming strongly simplified boundary conditions. If
surface effects on the conductivity are completely ignored,
whereas the magnetic surface anisotropy is assumed to be
either absent �free-spin boundary condition� or so strong that
the magnetization at the surface cannot be displaced at all
�pinned-spin boundary condition�, the problem can be solved
by the introduction of a mirror nuclear spin. The result is that
the integrand in Eq. �11� must be multiplied by an extra
factor

1 � cos�2qd� , �54�

where d is the distance to the surface, and the plus and the
minus signs apply to the free-spin and the pinned-spin limits,
respectively. This shows that the surface contribution to Red
�i� can become of the same order of magnitude as the volume
contribution, �ii� can enhance or reduce the relaxation, and
�iii� depends on the surface conditions and thus on the
sample preparation.

With regard to the range of the surface effects into the
interior of the sample, the following can be said without
detailed theory: The characteristic length scales of the inter-
action between the nuclear spin and the lattice are �m and ld.
Accordingly, the surface effects are largest for d� ld, dimin-
ish with increasing distance to the surface in the range
ld�d��m, and can be neglected for d��m.

FIG. 1. Dependence of Red /n
2 on n for B�=0.059 T, �0 /�

=6.7 ��� cm �m�−1, �0=20��� cm�−1, and Fe as the host. ��0
denotes that the electronic and the nuclear spins precess in the op-
posite sense, and ��0 that they precess in the same sense.

FIG. 2. Dependence of Red on the resistivity ratio for B�

=0.059 T, n=0.79 GHz, �0 /�=6.7 ��� cm �m�−1, �0�300 K�
=0.1 ��� cm�−1, and Fe as the host. The region of small resistivity
ratios is shown enlarged in the inset.
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F. Gilbert damping

In this section, the following relaxation mechanism is dis-
cussed: The nuclear spins virtually excite spin waves, which,
in turn, decay via the Gilbert damping. Rgi denotes the re-
spective contribution to the relaxation constant. Since the
mechanisms of the Gilbert damping are not known, in this
way, the relaxation mechanism is specified only in part, in
part it is described only phenomenologically. For example, it
may well be that the scattering of conduction electrons by
the spin waves is part of the Gilbert damping and that Rin is
part of Rgi. The advantage of the phenomenological concept
of the Gilbert damping is that it is the generally accepted
description of the damping of the precession of the magne-
tization, which has been applied, for example, to many
ferromagnetic-resonance experiments.

The contribution of the Gilbert damping to dM /dt is

−
G

�eM
2
M �

dM

dt
� , �55�

where G is the Gilbert damping parameter. Here, G is as-
sumed to be independent of q. This is in accord with the use
of G in the literature, where it is treated as a constant, irre-
spective of the length scales of the problem, such as the skin
depth or the thickness of thin films. However, one should be
aware that the q independence of G is not well established
and that a q dependence would distinctly alter the properties
of Rgi.

In passing, we note that the form of the Gilbert damping
might appear somewhat peculiar, if compared, for example,
to a Bloch-type damping: �i� The relaxation of a displace-
ment of the magnetization is proportional to the velocity and
not to the magnitude of the displacement. �ii� In the case of
an elliptic precession of the magnetization, the relaxation is,
in general, not directed toward the equilibrium position. �iii�
If the magnetization precesses in a sense that is opposite to
the sense of the free precession, which may occur in re-
sponse to an external rf field, the damping term increases the
displacement of the magnetization. In this context, it is of
interest that it can be shown that the eddy-current damping
also shows all those peculiarities.

It can be shown that the contributions to �x and �y from
the Gilbert damping are

�x
�gi� = �y

�gi� = − i
G�

�eM
. �56�

Since it turns out that Rgi is mainly due to momentum trans-
fers of the order of q� ld

−1, approximation �28� can be ap-
plied. The result is

Rgi =
kB�n

2V


S�2��3

G

	�e	M
� cx

2 + cy
2

��x
�0��2 d3q . �57�

If �n��x
�0�, Eq. �57� can be further simplified. In that

limit, the integrand reduces to

��x
�0��−2 + ��y

�0��−2, �58�

which can be integrated by standard integrals. The result is

Rgi �
kB
1/2V�n

2G

8�S�D�e�3/2MB�
1/2Fc
 B�

4�M
� , �59�

where

Fc�x� = 1 + x1/2 arcsin
 1

�1 + x�1/2� . �60�

The characteristic length and wavelength scales of the in-
teraction between the nuclear spin and the medium are re-
flected by the q dependence of the integrand in Eq. �57�,
which is largely proportional to �1+ �qld�2�−2. It follows that
the length scale is essentially given by ld and that mainly
momentum transfers of the order of q� ld

−1 are involved. In
comparison to Red, where the relevant length scales are �m
and ld, very small momentum transfers and very large dis-
tances are less involved.

The magnitude of Rgi can be calculated taking G
=0.053–0.076 GHz from the literature.36 For n=0.79 GHz
and B�=0.059 T, which applies to 186Ir in Fe at zero applied
field, one obtains Rgi=3.2–4.6 �s K�−1. The comparison with
the experimental relaxation constants, R�0�−R���
=24 �s K�−1 and R���=8 �s K�−1, shows that Rgi is a non-
negligible contribution to the field-dependent part of the re-
laxation, although it is not the main contribution. The
element- and lattice-site-specific local electronic structure at
the impurity does not enter except via the parameter �n. That
impurity independence results, as in the case of Red, from the
long range of the interaction between the spin and the me-
dium.

The magnetic-field dependence of Rgi is determined by
the factors B�

−1/2 and Fc�B� / �4�M�� in Eq. �59�. The last
factor distinctly weakens the proportionality to B�

−1/2 at mod-
erate field strengths. Between B�=0.059 T and B�=2 T, for
example, the field dependence of Rgi can be well described
by B�

−� with � close to 0.40.
The dependence of Rgi on the nuclear resonance fre-

quency largely follows Rgi�n
2. The deviations from that pro-

portionality are distinctly smaller than in the case of Red: At
B�=0.059 T, for example, Rgi /n

2 increases by 5.9% between
n=0 GHz and n=1 GHz if the electronic and the nuclear
spins precess in the same sense and decreases by 3.6% if the
electronic and the nuclear spins precess in the opposite sense.

The temperature dependence of Rgi is only weak up to
room temperature, since the parameters G, Ba, D, M, �e, and
V are only weakly temperature dependent. Surface effects are
introduced by the magnetic surface anisotropy and the miss-
ing magnetic volume anisotropy beyond the surface. They
may become as important as in the case of Red. However, the
distance to the surface where they become important is of the
order of ld and thus much smaller than in the case of Red,
where it is of the order of �m.

G. Domain walls

The nuclear spin-lattice relaxation in the domain walls is
known to be by up to 2 orders of magnitude faster than the
relaxation in the domains.21,37,38 This had no consequences
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for the experiments in this work, since the used measurement
technique is insensitive to the nuclei in the domain walls.
Nevertheless, a short comment is appropriate, since this is a
case where the ferromagnetism causes a strong enhancement
of the relaxation and where the origin of this enhancement is
thought to be known.

It has been proposed that the nuclear spins in the domain
walls couple to vibrations of the domain walls, which, in
turn, are damped by eddy currents.21,39 Thus, it might be
possible to develop a unified treatment of the relaxation in
domain walls and the relaxation via eddy currents. One dif-
ficulty will be that in the case of the domain walls, their
spatial distribution and their restoring forces play an impor-
tant role. The poor knowledge of those parameters will make
a detailed comparison with the experiment difficult.

IV. RELAXATION MEASUREMENT BY NUCLEAR
MAGNETIC RESONANCE ON ORIENTED NUCLEI

In nuclear magnetic resonance on oriented nuclei �NMR-
ON�, the resonant depolarization of the radioactive probe
nuclei is detected via the resulting change in the anisotropic
emission of the � radiation.40 To measure the nuclear spin-
lattice relaxation by NMR-ON, the frequency modulation
�FM� of the rf field is periodically switched on and off.8,41

Due to the inhomogeneous broadening of the resonance, the
nuclear spins are excited only if the FM is enabled and relax
back to thermal equilibrium if it is switched off.

Essentially, three parameters can be obtained from a least
squares fit to the relaxation curve of the � anisotropy during
the FM on-off cycle: the relaxation constant R, the rf transi-
tion rate Rrf, which is defined below, and the fraction f rf of
the probe nuclei that are excited by the FM. f rf�1 occurs,
for example, if some probe nuclei are located on slightly
disturbed lattice sites, with resonance frequencies that lie
outside of the bandwidth of the FM.

At the low temperatures of NMR-ON experiments, a mul-
tiexponential relaxation behavior is observed, which can be
described by a set of rate equations �the master equation� for
the sublevel populations:

d

dt
pm = �

n

�Wm,npn − Wn,mpm� , �61�

where pm is the population of the level with the magnetic
quantum number m and Wm,n is the transition rate from the
level n to the level m. The transition rates are given by

Wm+1,m = cm,m+1� hn

2kB�1 − b�
R + Rrf� ,

Wm,m+1 = cm,m+1� hnb

2kB�1 − b�
R + Rrf� , �62�

where

cm,m+1 = I�I + 1� − m�m + 1� ,

b = exp
− hn

kBT
� ,

and I is the nuclear spin. When the FM is not applied,
Rrf=0. We only mention that actually more sophisticated ex-
pressions for the transition rates were used, which are given
in Ref. 42. However, the differences are not decisive in the
context of this work. The solution of the master equation and
the relationship between the sublevel populations and the �
anisotropy are described in detail in Refs. 3, 41, and 43.

The description of the relaxation behavior of dilute
nuclear spins by transition rates is well established in the
absence of a rf field. The use of the rf transition rate Rrf,
however, has been discussed controversially: On one hand, it
has been argued that the effect of a coherent rf field cannot
correctly be treated in that way.2,3,12,14 On the other hand, it
has been argued that in NMR-ON experiments, the coher-
ence is sufficiently disturbed to justify such a treatment.9,44,45

To clarify that point, in the remainder of this section, the
excitation process is analyzed in more detail.

Due to the FM, the rf field induces transitions between the
sublevels only during small time intervals when the rf fre-
quency passes the resonance frequency of the particular spin.
Fast passages, therefore, alternate with intervals of nearly
free precession. Within the rotating frame, each passage
causes a rotation of the spins by an angle � around the y axis,
whereas in the time until the next passage, the spins precess
around the z axis by the angle �. � depends on the rf-field
strength. Usually, ���. In that limit, �2 is proportional to
the applied rf power per FM bandwidth. � is given by

� = 2��
tp

tp+�t

�n − rf�t��dt , �63�

where rf�t� is the frequency of the rf field as a function of
the time, tp is the time of the passage, and �t is the time
between successive passages. Contributions of the fast pas-
sages to � are neglected here for simplicity, because they
change the dependences of � on n and rf not decisively.

To describe the sequence of the rotations of the spins, it is
convenient to expand the spin density matrix � into irreduc-
ible tensor operators Tlm of rank l and order m according to

� = �
l=0

2I

�
m=−l

l

blmTlm, �64�

where the blm’s are complex coefficients.46,47 The coefficients
blm

�j+1� before the �j+1�th passage are then given in terms of
the coefficients before the jth passage by48

blm
�j+1� = exp�− im�� �

m�=−l

l

dmm�
�l� ���blm�

�j� . �65�

Here, the dmm�
�l� ���’s are the elements of the reduced rotation

matrix, which are given, for example, in Ref. 48.
� is the sum of its nominal value �0 and of a fluctuating

part � f, which varies from passage to passage, because the
instability of the rf generator leads to small fluctuations of rf
around its nominal value. For example, for a sawtooth modu-
lation, Eq. �63� gives
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�0 = 2�
n − c

FM
, �66�

where FM is the modulation frequency and c the center
frequency. Since the inhomogeneous broadening of n is usu-
ally much larger than FM, all values of �0 between 0 and 2�
occur almost equally frequently. The mean square deviation
�� f of � f can be related to the full width of half maximum
�rf of the frequency spectrum of the fluctuations of rf. If
the correlation time of the fluctuations is much smaller than
both FM

−1 and ��rf�−1, the spectrum is motion narrowed,49

and the following relation can be derived from Eq. �63�:

�� f = 
2�
�rf

FM
�1/2

. �67�

This detailed description of the excitation process can be
used to calculate the temporal evolution of the density matrix
after the FM is switched on. Initially, the density matrix is
diagonal, which implies that only the bl0’s are different from
zero. The subsequent changes of the blm’s from passage to
passage follow from Eq. �65�. To take the variation of �0
between 0 and 2� into account, one must either repeat the
calculation for different �0’s and take the average as the
density matrix of the entire spin system. Or one expands the
blm’s into powers of exp�i�0�, calculates the temporal evolu-
tion of the expansion coefficients by a correspondingly ex-
tended version of Eq. �65�, and takes the coefficients of the
zeroth power as the density matrix of the entire spin system.

To simulate the fluctuations of � f, before each passage, a
new value of � f was determined by a random number gen-
erator in such a way that the probability distribution of � f
was Gaussian with mean square deviation �� f. For simplic-
ity, it was assumed that � f is the same for all spins. Due to
the fluctuations of � f, the excitation curves fluctuate too.
However, in the measurements, these fluctuations are re-
duced, because the average over several FM on-off cycles is
taken. Accordingly, the evolution of � was calculated a num-
ber of nr times with different random numbers, and the av-
erage was adopted as the final result.

In this way, the exact temporal evolution of the spin den-
sity matrix was calculated for different values of l, �, �� f,
and nr. The comparison with the predictions of the rate equa-
tions �61� and �62� showed under which conditions those
equations are a good approximation. If the spin-lattice relax-
ation is neglected, the rate equations, which describe only the
diagonal part of �,47 predict41

bl0�t� = bl0�0�exp�− klt� ,

kl = l�l + 1�Rrf. �68�

This turned out to be a good approximation under the fol-
lowing conditions.

�i� The fluctuations of the bl0
�j�’s due to the fluctuations of

� f are roughly proportional to �nlnr�−1/2, where nl is the num-
ber of the fast passages after which bl0 is reduced by a factor
of e. nlnr can be interpreted as the number of � f’s that con-
tribute to the essential part of the excitation curve. In order
that the temporal evolution of bl0 is reasonably smooth and
well defined, that number must be large enough.

�ii� The coherence between the rf field and the spin sys-
tem is disturbed by the random variations of �0 from spin to
spin and of � f from passage to passage. In order that the
coherence gets essentially lost, �� f must be at least of the
order of �. In that case, the individual contributions to the
nondiagonal elements of � cancel each other, and the diago-
nal elements decay, in the limit nr→�, exponentially accord-
ing to

bl0
�j+1� = bl0

�1��d00
�l����� j . �69�

�iii� In order that the respective decay constants are pro-
portional to l�l+1� and to the applied rf power, the condition
���, which is equivalent to nl�1, must be fulfilled. In that
limit the decay constant of bl0 can be approximated by

− log�d00
�l�����

�t
�

l�l + 1��2

4�t
, �70�

which is identical to kl of Eq. �68�, if Rrf is identified with
�2 / �4�t�.

A quantitative analysis revealed that the deviations from
prediction �68� of the rate equations are less than 3% of
bl0�0� if �� f 	0.55�, nl	10, and nlnr	80. Typical num-
bers that apply to the experiments in this work are �rf
=750 Hz, FM=100 Hz, �� f =2.2�, nr=1000, and nl=20.
The conclusion is, therefore, that the interpretation of the
NMR-ON relaxation curves in this work by the rate equa-
tions is justified.

Finally, it should be mentioned that, in order to confine
the number of the parameters to a minimum, this analysis of
the excitation process neglects several involvements: �i� The
spin-lattice relaxation is completely neglected. �ii� A single
resonance frequency for each spin is assumed. However, due
to the small electric hyperfine interaction in cubic ferromag-
nets, the resonance is actually split into 2I subresonances.
�iii� � f is assumed to be the same for all spins. However,
since the moment of a particular fast passage is not exactly
the same for all spins, � f actually also varies from spin to
spin, though much less than from passage to passage. �iv�
The actual pattern of the modulation of the rf frequency may
be more involved than a sawtooth modulation.

However, all those effects only further disturb the coher-
ence between the rf field and the spins. The agreement with
the rate equations should, therefore, be still better than dem-
onstrated above.

V. EXPERIMENTAL DETAILS

The Fe sample was a circular single-crystal disk with
�110� plane, 2.2 mm thick, and 12 mm in diameter. The pu-
rity of the sample and the flatness of the surface benefited
from the fact that the sample was originally prepared for
experiments on surface chemistry: For example, the bulk
concentration of sulfur was reduced by baking at tempera-
tures of 970–1120 K in flowing hydrogen for three weeks.
The segregation of contaminants at the surface was reduced
in an UHV chamber by hundred cycles of heating �1000 K,
10–30 min� and Ar+ sputtering �500 K, 750 eV, 1 �A cm−2,
30–10 min�. The final examination of the purity at the sur-
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face by Auger-electron and photoelectron spectroscopies re-
vealed only about 0.4 at. % phosphorus, 0.4 at. % sulfur,
3 at. % carbon, and 1 at. % oxygen.

Hg precursors of the probe nuclei 186Ir and 189Ir were
coimplanted at the on-line mass separator ISOLDE at CERN
�about 3�1012 nuclei of 186Hg and 8�1012 of 189Hg, im-
plantation voltage of 60 kV�. To delimit the variation of
position-dependent parameters such as the demagnetization
field or the rf-field strength, the Hg beam was confined by a
diaphragm to a spot of 4 mm diameter in the center of the
disk. After the implantation, the sample was annealed for
about 1 /2 h at 970 K and slowly cooled down to room tem-
perature.

The sample was then loaded into a 3He-4He-dilution re-
frigerator and cooled down to temperatures in the 20 mK
range. The magnetic field was applied along the �100� direc-
tion in the sample plane. The orientation of the crystallo-
graphic axes relative to the magnetic field was accurate to 1°.
The � anisotropy was measured by four Ge detectors, placed
at 0°, 90°, 180°, and 270° with respect to the direction of the
magnetic field. The count rate ratio

� =
N�0 ° � + N�180 ° �
N�90 ° � + N�270 ° �

− 1 �71�

was used to analyze the data. The temperature was primarily
determined by a 60Co Co�hcp� nuclear orientation thermom-
eter. However, because of the low sensitivity of that ther-
mometer at temperatures above 20 mK, in most relaxation
measurements, the temperature was determined via the equi-
librium � anisotropy of 186Ir, which was calibrated with re-
spect to the primary thermometer at lower temperatures.

The rf frequency was modulated in the following way: An
external triangular FM was applied with bandwidth of
�5 MHz and frequency FM

�1� =100 Hz. In addition, to rein-
force the disturbance of the coherence between the rf field
and the spins, a second internal triangular FM was applied
with bandwidth of �200 Hz and frequency FM

�2� =1 Hz. The
half-width �rf of the frequency fluctuations of the rf signal
generator in the external modulation mode was about
750 Hz. This was measured at nominally zero applied modu-
lation voltage by a rf frequency analyzer.

The magnetic dipolar and the electric-quadrupolar parts of
the relaxation were determined from the combined relaxation
data on 186Ir and 189Ir, as discussed in Ref. 15. In this work,
only the magnetic relaxation constants of 186Ir are quoted.
Anyway, for that isotope, the quadrupolar contribution to the
relaxation was only of the order of 1%.

VI. MEASUREMENTS

The static hyperfine interactions were determined by
NMR-ON and modulated adiabatic fast passage on oriented
nuclei �MAPON�.50,51 Figure 3 shows the NMR-ON spec-
trum at Bext=0.1 T. The magnetic resonance frequency and
the subresonance separation were n=794.68�20� MHz and
�Q= +0.838�2� MHz, respectively. Additional NMR-ON
spectra were measured at Bext=0.5 and 1.0 T. From the field
dependence of the resonance, Bdem

�0� =0.274�17� T was de-

duced. To excite all subresonances in the relaxation measure-
ments, the frequency was modulated, for example, at
Bext=0.1 T between 789.4 and 799.4 MHz.

The magnetization behavior was monitored via the � an-
isotropy of 186Ir, which remained constant at 95�1�% of its
saturation value for Bext�0.25 T, increased slightly between
0.25 and 0.40 T, and remained at its saturation value for
higher fields. This confirmed that the magnetization was es-
sentially aligned along the �100� direction within the sample
plane. Other alignments of the magnetization apparently only
occurred at low fields in a small fraction of the sample. That
fraction remained constant in the multidomain regime up to
Bext=Bdem

�0� but disappeared at higher fields.
The angular-distribution coefficients of the most intense �

transitions of 186Ir, which were needed for the description of
the relaxation curves and for the thermometry via 186Ir, were
determined by measurements of the � anisotropy as a func-
tion of the temperature between 10 and 23 mK. For example,
A2=−0.311�2� and A4=−0.136�4� were obtained for the
297 keV transition at Bext=0.5 T. �Here, Ai corresponds to
AiUi in the notation of Ref. 43.�

The reliability of the relaxation measurement technique
was tested by measurements at different rf-power levels. For
example, at Bext=0.5 T, the applied rf power Prf was varied
in five measurements by a factor of 16. Thereby the relative
resonant reduction of the nuclear magnetization varied be-
tween 9% and 71%, whereas the temperature varied between
kBT /hn=0.60 and kBT /hn=1.78. Figure 4 shows three of
the relaxation curves. All relaxation curves could perfectly
be described by the theory. Moreover, the least squares fit
results for R, Rrf, and f rf were all consistent, demonstrating
the reliability of the measurement technique and of the inter-
pretation of the relaxation curves. The fit results are shown in
Fig. 5 as a function of Prf.

Similarly consistent results were obtained at Bext=0.1 T,
where Prf was varied in six measurements by a factor of 32.
The only deviation from the theory was that at the two high-
est rf-power levels, the increase of Rrf with Prf was smaller
than expected. However, at those high power levels, the time
scale of the excitation by the rf field was extraordinarily
short, of the order of 2–3 periods of the FM. It is not sur-
prising that in this case, the picture of a continuous excitation
process begins to fail.

Further tests examined the disturbance of the coherence of
the rf field. According to Sec. IV, that disturbance manifests

FIG. 3. NMR-ON spectrum of 186Ir at Bext=0.1 T. T
=46�2� mK, FM bandwidth �0.5 MHz. The interpretation of the
only partly resolved subresonance structure made use of the knowl-
edge of the distribution of �Q from the MAPON measurements.
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itself in fluctuations of �=�0+� f, the relative phase of sub-
sequent fast passages. As shown in Sec. IV, the fluctuations
are expected to be large enough that the excitation of the
spins can be described by rf transition rates as in the case of
an incoherent irradiation. In this case, additional variations
of � should have no effect. This was confirmed in the fol-
lowing ways: �i� Relaxation measurements with and without
the second FM, which varies �0 periodically by more than

2�, gave identical results. �ii� Applying only a single modu-
lation, the resonance effect was measured as a function of
FM. In this way, �� f was varied according to Eq. �67�, but
the resonance effect remained essentially constant between
FM=50 Hz and FM=1 kHz.

Only for FM=5 kHz and larger FM’s the resonance effect
was significantly reduced as a result of the reduction of �� f.
The resonance effect was also reduced for FM=20 Hz and
smaller FM’s, because the time between the fast passages
became of the order of the relaxation time. A similar depen-
dence of the NMR-ON resonance effect on FM and a similar
interpretation had already been reported in Ref. 41 for 60Co
in Fe.

The magnetic-field dependences of the spin-lattice relax-
ation and the enhancement factor were determined by relax-
ation measurements at 17 different fields between 0.05 and
2.0 T. R and Rrf / Prf, which is, apart from a prefactor, equiva-
lent to �2, are shown as a function of Bext in Figs. 6 and 7,
respectively. f rf was in all cases consistent with the average
value f rf=0.88�2�.

The field dependence of � was described by Eqs. �1� and
�3�, assuming Ba=0.059 T. This resulted in a perfect descrip-
tion of the field dependence of Rrf / Prf over 3 orders of mag-
nitude. Only Bdem

�0� and the proportionality constant between
�2 and Rrf / Prf were adjusted via least squares fit. The solid

FIG. 4. 186IrFe, Bext=0.5 T: NMR-ON relaxation curves at dif-
ferent rf-power levels �and temperatures�. Prf in arbitrary units. The
increase and the decrease of � reflect the temporal evolution after
switching the FM on and off, respectively.

FIG. 5. 186IrFe, Bext=0.5 T: R, Rrf / Prf, and f rf from measure-
ments at different rf-power levels. At the lowest power level, f rf had
to be taken from the other measurements, because f rf and Rrf proved
to be too correlated to determine both parameters independently.

FIG. 6. 186IrFe: Magnetic-field dependence of the nuclear spin-
lattice relaxation.

FIG. 7. 186IrFe: Magnetic-field dependence of the square of the
enhancement factor.
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line in Fig. 7 shows the respective theoretical curve. If Ba
was also fitted to the data, Ba=0.0607�11� T was obtained, in
agreement with the literature value.

Bdem
�0� =0.287�2� T was obtained from the fit to the field

dependence of �2, in agreement with the value that was de-
duced from the field dependence of n, but in disagreement
with the calculated value, Bdem

�0� �0.20 T. The deviation from
the calculated value could not be resolved. In any case, the
sharp bend of the field dependences at Bext=Bdem

�0� showed
that the assumption of a uniform value of Bdem

�0� for all probe
nuclei was essentially justified.

The field dependence of R could be described in different
ways. The EFM in the form of Eq. �2� has the virtue that the
magnitude and the form of the field dependence can be char-
acterized by a simple expression without binding oneself to a
particular explanation. The dashed line in Fig. 8 shows the fit
of that model to the data. Using Ba=0.059 T, an almost per-
fect description was obtained with

R�0� = 32.20�20� �s K�−1,

R��� = 8.69�22� �s K�−1,

� = 1.39�4� .

If, as it is done in this work, the field dependence of the
relaxation is attributed to eddy-current and Gilbert dampings,
R is the sum of a field-independent part R��� and of the
field-dependent contributions Red and Rgi. The data could
perfectly be described in this way. The solid lines in the Figs.
6 and 8 show the respective theoretical curve. The following
parameters were determined via least squares fit:

�0/� = 7.1�6� ��� cm �m�−1,

G = 0.075�17� GHz,

R��� = 7.4�5� �s K�−1.

The quoted errors already take the uncertainty in �0 into
account. �0 was assumed to be in the range
3.0–1000 ��� cm�−1, which corresponds to a residual resis-
tivity ratio between 30 and 104. The composition of the field-
dependent part of the relaxation changes strongly with the
field: At Bext=0 T, for example, the quoted damping param-
eters imply Red=20.2 �s K�−1 and Rgi=4.6 �s K�−1, whereas
at Bext=1 T, for example, Red=0.29 �s K�−1 and Rgi
=1.60 �s K�−1.

In the past, the field dependence of the relaxation had
often been described by the EFM assuming �=2, and Ba had
been fitted to the data. To assess the results that had been
obtained in this way, we also applied that traditional variant
of the EFM. The following parameters were obtained via
least squares fit:

Ba = 0.091�4� T,

R��� = 9.41�18� �s K�−1.

The dotted line in Fig. 8 shows the respective theoretical
curve. The field dependence of R is remarkably well repro-

duced, at least between 0 and 1 T, although Ba is clearly
wrong.

VII. DISCUSSION

A. Origin of the magnetic-field dependence

For all the relaxation mechanisms that were discussed in
Sec. III, the magnetic-field dependence is actually a depen-
dence on B�. The knowledge of the magnetic-field depen-
dence of B� is thus indispensable for the comparison be-
tween experiment and theory. Therefore, the experimental
determination of the field dependence of B� in this work via
the quantity Rrf / Prf was particularly important. It confirmed
that B� was indeed given by Eq. �3� with Ba=0.0607�11� T.
This showed, in particular, that the value of Ba and the mag-
netization behavior were not modified at the site of the probe
nuclei by the presence of the impurity, by the closeness to the
surface, or by other effects.

The discussion of the various potentially field-dependent
relaxation mechanisms in Sec. III showed that most of them
can be excluded as the source of the observed field depen-
dence: The direct excitation of spin waves is not possible,
since the spin-wave frequencies are larger than n. The exci-
tation of sound waves is negligible. The field dependences of
the various variants of the indirect spin-wave mechanism are
given in Sec. III D. They are all too weak to explain the
observed field dependence. A connection to domain walls
can also be excluded, since the domain walls just disappear
when the field dependence sets in at Bext=Bdem

�0� .
In contrast, the relaxation via eddy-current and Gilbert

dampings explains both the magnitude and the form of the
field dependence. It provides a perfect description of the
data. The used values of the damping parameters �0 /� and
G are well within the expected ranges, which were specified

FIG. 8. 186IrFe: Comparison of the field dependence of the spin-
lattice relaxation with the descriptions by R=R���+Red+Rgi �solid
line�, by the EFM with Ba=0.059 T and �=1.39 �dashed line�, and
by the EFM with Ba=0.091 T and �=2 �dotted line�. In order to
show the low-field part more clearly, a double logarithmic scale was
used, and Bext was converted into B�, assuming Bdem

�0� =0.287 T and
Ba=0.059 T.
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in Secs. III E and III F. This strongly suggests that the relax-
ation via eddy-current and Gilbert dampings is indeed the
source of the magnetic-field dependence of the nuclear spin-
lattice relaxation in Fe. Of course, further, hitherto unknown,
sources cannot completely be excluded, since �0 /� and G
had to be adjusted via least squares fit. One should also be
aware that the used values of �0 /� and G may not represent
the actual values of those damping parameters, because the
surface effects were not taken into account.

Having identified the relaxation mechanism that is re-
sponsible for the magnetic-field dependence, we can now use
the theory that has been worked out in Secs. III E and III F to
establish the connection to previous theoretical work, to re-
interpret the results of other experiments, to compare the
field dependences in Fe, Co, and Ni, and to judge the validity
of the literature values of R���.

B. Previous concepts

The theory of the spin-lattice relaxation via eddy-current
and Gilbert dampings contains several concepts that have
already been suggested previously in the context with the
field dependence of the relaxation in Fe: For example, the
virtual excitation of spin waves, which was proposed to-
gether with the indirect spin-wave mechanism, is also one
step in the relaxation via eddy-current and Gilbert damping.
Moreover, the indirect spin-wave mechanism itself can be
understood as one contribution to Rgi.

It also turns out that the original concept of the EFM, the
proportionality between the field-dependent part of the spin-
lattice relaxation and the square of the enhancement factor,
indeed applies in some sense to the relaxation via the virtual
excitation of spin waves. However, it is the enhancement
factor

��q� =
BHF

B� + �Dq2�/�
	�e	�

of transversal fields with wave vector q that enters quadrati-
cally via the factor ��x

�0��−2 in Eq. �28�. The field dependence
thus essentially combines ���q��2 terms from all momentum
transfers, whereas within the EFM, it is approximated by a
�� term, where � is the q=0 limit of ��q�. Since the field
dependence of ��q� decreases with increasing q, � is smaller
than 2. To which extent depends on the weighting of the
individual momentum transfers.

This relationship to the EFM also reveals that the form of
the field dependence is indeed a signature of the proposed
relaxation mechanism: It was first a puzzle that the field-
dependent part of the relaxation seemed to be proportional to
�2, as if only q=0 would contribute. That puzzle is now
solved: On one hand, our experiment shows that � is indeed
smaller than 2. On the other hand, the eddy-current damping
implies a particularly strong weighting of small momentum
transfers: Im��x

�ed�� and Im��y
�ed�� are proportional to q−3 for

q��1 and q��1. Such a strong preference of small q’s is
required to explain the strong field dependence with � close
to 1.4. Moreover, it is not readily reproduced by other relax-
ation mechanisms, as the discussion in Sec. III D showed:
All discussed variants of the indirect spin-wave mechanism
have distinctly weaker field dependences, because the small
momentum transfers are less strongly weighted.

C. Other experiments

A major problem of the interpretation of previous experi-
ments is the fact that the field dependence of B� is not well
known in most cases. B� is reasonably well known only for
the experiments on Fe single crystals where the magnetic
field was applied along the �100� direction in the sample
plane. The data of those experiments were redescribed by
both R���+Red+Rgi and the EFM. B� was assumed to be
given by Eq. �3� with Ba=0.059 T. Bdem

�0� was fitted to the
data. Table I summarizes the results.

The form of the field dependences supports the interpre-
tation by Red+Rgi. The parameter � is a measure of the re-
spective agreement with the theory. It is, within the error, in
all cases close to 1.4, as expected for Red+Rgi. In contrast,
the magnitudes of the field dependences are inconsistent in
so far as they cannot be described by the same set of damp-
ing parameters �0 /� and G. This also manifests itself by the
differences in �R�0�−R���� /n

2, which cannot be explained
by the weak n dependence of �Red+Rgi� /n

2. This inconsis-
tency may be attributed to surface effects. This would imply
that differences in the surface preparation or in the location
of the probe nuclei had changed the field-dependent part of
the relaxation by up to a factor of 2.

Relaxation measurements on Fe single crystals were also
performed with the magnetic field applied along other

TABLE I. Parameters of the field dependence of the spin-lattice relaxation in Fe from different experi-
ments in the �100� geometry. �0 /� was determined by a fit of R���+Red+Rgi, assuming a residual resistivity
ratio between 30 and 104. G=0.075 GHz was taken from the 186Ir experiment, because the precision of the
data was not sufficient for its determination in the other cases. �, R�0�, and R��� were determined by a fit of
the EFM.

Isotope
n

�GHz� Ref.
�0 /�

���� cm �m�−1� �
�R�0�−R���� /n

2

��s K�−1 GHz−2�
R��� /n

2

��s K�−1 GHz−2�

110mAg 0.205 9 2.6�5� 1.60�34� 21.0�24� 10.3�12�
131I 0.683 8 and 9 5.2�6� 1.36�17� 30.9�19� 8.3�12�
186Ir 0.795 This work 7.1�6� 1.39�4� 37.2�5� 13.8�3�
191Pt 0.320 52 2.7�3� 1.13�30� 21.9�20� 9.9�14�
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crystallographic directions.8,9,14 In most cases, geometries
were investigated where B� vanishes, at least nominally, for
certain values of the magnetic field. Those experiments
nicely demonstrated that it is indeed the quantity B� that has
to become small to obtain a large relaxation rate. However,
quantitative conclusions are not possible, because the field
dependence of B� was not determined experimentally, nor
can it reliably be calculated. The problem with the calcula-
tion is that, when B� becomes very small, the magnetization
behavior becomes extremely sensitive to misalignments and
inhomogeneities, which are always unavoidable to some ex-
tent.

Most of the previous relaxation experiments were per-
formed on cold-rolled polycrystalline foils of dilute Fe al-
loys, where a well-founded description of the field depen-
dence of B� is not feasible. Nevertheless, the previous
interpretation of those experiments is of interest, because it
seemed to support the assumption �=2: The field depen-
dence of the relaxation could be described by the EFM and
�=2, if B� was parametrized by Ba+Bext, and Ba was ad-
justed via least squares fit.6,7,53,54 However, Ba and � are
strongly correlated, and over a fairly large magnetic-field
region, a wrong choice of one of those parameters can be
compensated by a wrong choice of the other parameter. This
was demonstrated in this work for 186IrFe: The field depen-
dence of R could almost equally well be described by �
=1.39 and the “correct” Ba or by �=2 and a “wrong,” dis-
tinctly larger Ba. Therefore, the values of � and Ba from the
previous interpretation of those experiments are meaningless.

The theory of Red+Rgi is also important for the under-
standing of experiments where the relaxation rates of differ-
ent isotopes of the same element in the same sample are
compared, because it predicts deviations from the usually
expected proportionality to n

2, which is well established, for
example, for R���.53 An experiment of this kind on 60Co
�n=0.166 GHz� and 58Co �n=0.442 GHz� in Fe was re-
ported in Ref. 14. From the low-field measurements of that
work,

�R�/n
2��58Co�

�R�/n
2��60Co�

= 0.70�12�

can be deduced, where R� denotes the field-dependent part of
R. B� was presumably in the range 0.02–0.06 T. The devia-
tion from R��n

2 is, at least in part, explained by the theory
of Red+Rgi, according to which

��Red + Rgi�/n
2��58Co�

��Red + Rgi�/n
2��60Co�

= 0.81 – 0.89,

if the damping parameters are similar to those of the 186IrFe
experiment. Unfortunately, the statistical significance of the
quoted data is poor and technical details of the respective
measurements have been questioned.7

Relaxation measurements on different isotopes of the
same element in the same sample were also reported in Refs.
15 and 42. They were used to deduce the electric-
quadrupolar part of the spin-lattice relaxation, which is

possible, if the quadrupole moment of one of the isotopes is
sufficiently large. However, to separate the magnetic-dipolar
and the electric-quadrupolar parts of the relaxation, a scaling
of the magnetic part with n

2 was assumed. Therefore, the
deduced field dependences of the quadrupolar relaxation are
invalid. In contrast, the deduced high-field limits should es-
sentially be correct.

In the case of the measurements of this work on 186Ir and
189Ir, the data were reanalyzed, taking the n dependences of
Red and Rgi into account. The revised result for the ratio of
the low-field and the high-field quadrupolar relaxation con-
stants is Rq�0 T� /Rq�2 T�=0.97�15�. Thus, there is no sig-
nificant field dependence of the quadrupolar relaxation, in
contrast to our previous conclusion in Ref. 15.

This field independence of the quadrupolar relaxation is in
accord with the theory. Indeed, Red and Rgi also contribute to
the quadrupolar relaxation, because the magnetization is also
coupled to the nuclear quadrupole moment via the spin-orbit-
induced electric-field gradient, but the contributions are too
small to be observable. The form of these contributions is
well known from the similar but much stronger contribution
of the indirect spin-wave mechanism to the quadrupolar re-
laxation in the rare earth metals:30 The net effect is that Red
and Rgi must be calculated for each transition probability
Wm+1,m separately with n replaced by the respective transi-
tion frequency m+1,m of the quadrupolar-split resonance
spectrum. In Fe, the effect is negligible, because the m+1,m’s
differ only slightly from n.

D. Magnetic-field dependence in Co and Ni

Distinct magnetic-field dependences of the nuclear spin-
lattice relaxation have also been observed in Co�hcp�,55

Co�fcc�,56 and Ni.9 A detailed comparison with the theory is
not possible, because the field dependence of B� is not suf-
ficiently well known for those experiments. However, esti-
mates of the typical magnitudes of Red, Rgi, and R��� can
show at least whether major differences to the situation in Fe
are to be expected. To estimate Red and Rgi in Co and Ni, D
and G were taken from Refs. 36 and 57–59. As discussed
below, in the case of G, the room-temperature value should
be used, which is, for Co and Ni, distinctly smaller than the
low-temperature value. �0 /� should be of the same order
of magnitude in Fe, Co, and Ni. Data on R��� in Fe, Co, and
Ni are available, for example, from Refs. 3, 9, 53, 55, and
60–63.

In the case of Co as the host, Red, Rgi, and R��� turn out to
be of the same order of magnitude as in Fe. Thus, decisive
differences to the situation in Fe are not expected, apart from
differences in the field dependence of B�.

In contrast, for Ni as the host, Red is of the same order of
magnitude as in Fe, but Rgi is larger by a factor of 20 and
R��� by typically 1 order of magnitude, if the comparison is
made for the same values of n and B�. Thus, if B� is of the
order of 0.1 T, the relaxation is faster than in the high-field
limit by factors that are similar to those in Fe. However, in
Ni, this is largely due to Rgi and not to Red. This has the
following consequences: The field dependence of the relax-
ation is much weaker than in Fe, with � close to 0.4. More-
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over, this implies that even at relatively large fields of the
order of 1 T, a large fraction of the relaxation may be due to
the field-dependent part.

It was also calculated which value of Rgi in Ni is expected
if the low-temperature value of G is used in combination
with Eq. �57�. It turned out that the use of the low-
temperature value is in contradiction to the experiment: For
110mAg in Ni at Bext=0, for example, in this way, Rgi
=1.1 �s K�−1 is predicted, which is much larger than the ob-
served relaxation constant of about R�0.2 �s K�−1 in this
case.9 In contrast, if the room-temperature value of G is
used, Rgi=0.19 �s K�−1 is predicted, which is of the right
order of magnitude. This finding confirms the following in-
terpretation of the temperature dependence of G: According
to Refs. 58 and 64, G is the sum of a largely temperature-
independent contribution and of a low-temperature contribu-
tion, which is negligible for T�150 K and which shows
similar temperature and wave-vector dependences as the
conductivity. The wave-vector dependence implies that the
respective contribution to Rgi is several orders of magnitude
smaller than suggested by the literature values of G, because
the wave vectors that are relevant for Rgi are much larger
than those that are relevant for the ferromagnetic-resonance
experiments that are used to determine G. The consequence
is that the low-temperature contribution to G makes only a
negligible contribution to the spin-lattice relaxation.

E. High-field limits

The high-field limits of the spin-lattice relaxation are im-
portant for the comparison with the ab initio calculations,
because the available calculations only take account of es-
sentially field-independent contributions. Most literature val-
ues of R��� in Fe were deduced by the EFM assuming
�=2.53 If the data of this work are interpreted in this way,
one obtains R���=9.41�18� �s K�−1. This is close to R���
=8.97�25� �s K�−1, which follows from the literature value
for IrFe from Ref. 53, if that value is corrected for the qua-
drupolar contribution to the relaxation42 and if a consistent
set of nuclear moments is used to convert that value to 186Ir.

In contrast, if the data are interpreted by R���+Red+Rgi,
the parameter R��� is about 20% smaller. This suggests that
the actual high-field limits are smaller than the literature val-
ues by amounts of the order of 20%.
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