96 research outputs found

    Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways

    Get PDF
    Anosmin-1, encoded by the KAL1 gene, is an extracellular matrix (ECM)-associated protein which plays essential roles in the establishment of olfactory and GNRH neurons during early brain development. Loss-of-function mutations of KAL1 results in Kallmann syndrome with delayed puberty and anosmia. There is, however, little comprehension of its role in the developed brain. As reactivation of developmental signal pathways often takes part in tumorigenesis, we investigated if anosmin-1-mediated cellular mechanisms associated with brain tumors. Our meta-analysis of gene expression profiles of patients' samples and public microarray datasets indicated that KAL1 mRNA was significantly upregulated in high-grade primary brain tumors compared with the normal brain and low-grade tumors. The tumor-promoting capacity of anosmin-1 was demonstrated in the glioblastoma cell lines, where anosmin-1 enhanced cell motility and proliferation. Notably, anosmin-1 formed a part of active β1 integrin complex, inducing downstream signaling pathways. ShRNA-mediated knockdown of anosmin-1 attenuated motility and growth of tumor cells and induced apoptosis. Anosmin-1 may also enhance the invasion of tumor cells within the ECM by modulating cell adhesion and activating extracellular proteases. In a mouse xenograft model, anosmin-1-expressing tumors grew faster, indicating the role of anosmin-1 in tumor microenvironment in vivo. Combined, these data suggest that anosmin-1 can facilitate tumor cell proliferation, migration, invasion, and survival. Therefore, although the normal function of anosmin-1 is required in the proper development of GNRH neurons, overexpression of anosmin-1 in the developed brain may be an underlying mechanism for some brain tumors

    Functional dissection of the Drosophila Kallmann's syndrome protein DmKal-1

    Get PDF
    BACKGROUND: Anosmin-1, the protein implicated in the X-linked Kallmann's syndrome, plays a role in axon outgrowth and branching but also in epithelial morphogenesis. The molecular mechanism of its action is, however, widely unknown. Anosmin-1 is an extracellular protein which contains a cysteine-rich region, a whey acidic protein (WAP) domain homologous to some serine protease inhibitors, and four fibronectin-like type III (FnIII) repeats. Drosophila melanogaster Kal-1 (DmKal-1) has the same protein structure with minor differences, the most important of which is the presence of only two FnIII repeats and a C-terminal region showing a low similarity with the third and the fourth human FnIII repeats. We present a structure-function analysis of the different DmKal-1 domains, including a predicted heparan-sulfate binding site. RESULTS: This study was performed overexpressing wild type DmKal-1 and a series of deletion and point mutation proteins in two different tissues: the cephalopharyngeal skeleton of the embryo and the wing disc. The overexpression of DmKal-1 in the cephalopharyngeal skeleton induced dosage-sensitive structural defects, and we used these phenotypes to perform a structure-function dissection of the protein domains. The reproduction of two deletions found in Kallmann's Syndrome patients determined a complete loss of function, whereas point mutations induced only minor alterations in the activity of the protein. Overexpression of the mutant proteins in the wing disc reveals that the functional relevance of the different DmKal-1 domains is dependent on the extracellular context. CONCLUSION: We suggest that the role played by the various protein domains differs in different extracellular contexts. This might explain why the same mutation analyzed in different tissues or in different cell culture lines often gives opposite phenotypes. These analyses also suggest that the FnIII repeats have a main and specific role, while the WAP domain might have only a modulator role, strictly connected to that of the fibronectins
    • …
    corecore