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Abstract

Background: Congenital hypogonadotropic hypogonadism (HH) is a rare cause for delayed or absent puberty. These
patients may recover from HH spontaneously in adulthood. To date, it is not possible to predict who will undergo HH
reversal later in life. Herein we investigated whether Finnish patients with reversal of congenital hypogonadotropic
hypogonadism (HH) have common phenotypic or genotypic features.

Methods and Findings: Thirty-two male HH patients with anosmia/hyposmia (Kallmann Syndrome, KS; n = 26) or normal
sense of smell (nHH; n = 6) were enrolled (age range, 18–61 yrs). The patients were clinically examined, and reversal of HH
was assessed after treatment withdrawal. KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7, WDR11, GNRHR, GNRH1, KISS1R, KISS1,
TAC3, TACR3, and LHb were screened for mutations. Six HH patients (2 KS, 4 nHH) were verified to have reversal of HH. In the
majority of cases, reversal occurred early in adulthood (median age, 23 yrs; range, 21–39 yrs). All had spontaneous testicular
growth while on testosterone replacement therapy (TRT). One nHH subject was restarted on TRT due to a decline in serum
T. Two reversal variants had a same GNRHR mutation (R262Q), which was accompanied by another GNRHR mutation (R139H
or del309F). In addition, both of the KS patients had a mutation in CHD7 (p.Q51X) or FGFR1 (c.91+2T.A).

Conclusions: Considerable proportion of patients with HH (8% of KS probands) may recover in early adulthood.
Spontaneous testicular enlargement during TRT was highly suggestive for reversal of HH. Those with the GNRHR mutation
R262Q accompanied by another GNRHR mutation may be prone to reversal, although even patients with a truncating
mutation in CHD7 or a splice-site mutation in FGFR1 can recover. We recommend that all adolescents and young adults with
congenital HH should be informed on the possibility of reversal.
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Introduction

Delayed puberty predisposes adolescent to a significant psycho-

social stress. Although constitutional delay of growth and puberty

is the most common cause for pubertal delay, a small proportion of

adolescents referred to evaluation for absent or delayed puberty

has congenital hypogonadotropic hypogonadism (HH). Congenital

HH is caused by the lack or deficient number of hypothalamic

gonadotropin-releasing hormone (GnRH) neurons, disturbed

secretion or action of GnRH, or both [1–4]. HH may occur with

anosmia/hyposmia (Kallmann Syndrome, KS), or without it

(normosmic HH, nHH). To induce pubertal development and to

maintain adult sex steroid levels, the majority of HH male patients

need life-long testosterone replacement therapy (TRT) [5].

However, up to 10% of HH patients may undergo reversal of

hypogonadotropism and some of them even attain normal sperm

count [6]. The phenotypic or genotypic features that would

predict reversal are currently not known.

Although several cases with reversal of HH have been described

[6–21], the clinical and molecular genetic features of these

patients, and the triggers leading to reversal of HH are not well

understood. For example, reversal variants have heterogeneous

genetic background and may harbor mutation(s) in KAL1 [18],

FGFR1 [16,20], PROK2 [19], GNRHR [15,17], and TAC3/TACR3

[21]. Age at reversal varies from 17 to 39 years, and the phenotype

of younger patients may mimic delayed puberty [17]. Androgen

exposure has been suggested to predispose to reversal [6,22],

although rare patients with a confirmed genetic cause for HH have

been reported to recover from hypogonadotropism spontaneously

[15,23]. Thus, relatively little is known about the circumstances

that predispose to reversal of HH.
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Herein, we investigate whether Finnish reversal variants

displayed a common phenotypic or genotypic feature that would

predict the clinical course of HH.

Methods

Patients
Thirty-two male patients, previously diagnosed with KS or

normosmic HH, who participated in the current study, were

enrolled from the 5 different university hospitals in Finland.

Patients were identified from hospitals’ discharge registers by the

International Code for Diseases edition 10 and 9 codes for

hypogonadotropic hypogonadism (E23.04 and 253.4, respectively)

and were invited to participate in our study if they fulfilled the

following criteria: 1) absent or incomplete puberty by the age of

18, 2) low testosterone levels in association with normal or

subnormal gonadotropin levels, 3) otherwise normal anterior

pituitary function, and 4) no organic cause for their condition. We

have previously reported the molecular genetic diagnoses of KS

patients, except for proband #2 in the current study (see below)

(24). All patients had received hormonal treatment to induce or

complete pubertal development.

Medical history, clinical examination, and assessment of
HH reversal

Medical records were reviewed and patients were interviewed

concerning their prior pubertal development and treatments

(including treatment pauses), and prior biochemical measure-

ments. Participants underwent physical examination as described

[24]. Testicular volume was measured with a ruler (length 6
width2 60.52). Olfaction was tested by 40-item UPSIT test

(University of Pennsylvania Smell Identification Test, Sensonic

Inc, Haddon Heights, NJ), and defective ability to smell was

defined by an UPSIT score ,5th percentile of age and/or absent

or rudimentary olfactory bulbs in MRI [25].

HH reversal was assessed either prospectively based on

treatment withdrawal, or retrospectively (if a subject had been

off treatment) based on medical records and anamnestic informa-

tion. In the current study, seven patients agreed to discontinue

their hormone therapy to assess reversal prospectively. Reversal

was diagnosed if they had normal serum reproductive hormone

levels after an appropriate treatment washout period (1 mo for

hCG injections, 3 mo for transdermal T, 3 to 6 mo for T

injections), and no symptoms of hypogonadism after cessation of

treatment. Those who did not fulfill these criteria were restarted

on TRT. Three subjects had undergone reversal already before

participating in this study. This retrospective identification of HH

reversal was based on: 1) spontaneous testicular growth during

and/or after TRT, 2) normal serum reproductive hormone levels

and 3) no symptoms of hypogonadism after discontinuation of

TRT.

Biochemical measurements
Serum LH and FSH levels measured before and/or after the

cessation of the hormone therapy were quantified with time-

resolved immunofluorometric assays (AutoDELFIA, Wallac,

Turku, Finland). The detection limit of the LH assay was 0.05

IU/L, and the interassay coefficient of variation (CV) was less than

4% in the concentration range 0.3–42 IU/L. For FSH, the

detection limit was 0.05 IU/L, and the interassay CV was 5% or

less in the concentration range 2–78 IU/L. Serum testosterone

concentrations were measured with an API 2000 tandem mass

spectrometer (AB Sciex, Foster City, California, USA) with a limit

of detection 0.05 nmol/L. Interassay CVs were 4.2–7.6 % at

mean concentrations of T of 3.3–45 nmol/L. Serum LH, FSH,

and T values at the time of the diagnosis were obtained from

medical records.

Mutation screening
KS patients were screened for mutations in genes KAL1, FGFR1,

FGF8, PROK2, PROKR2, CHD7, and WDR11 as described [24].

Mutations in these genes have previously shown to cause HH

together with anosmia. On the other hand, mutations in FGFR1,

FGF8, PROK2, PROKR2, CHD7, and WDR11 can also cause HH

without an olfactory defect and were therefore screened in patients

with normosmic HH. Normosmic patients were also screened for

mutations in GNRHR, GNRH1, KISS1R, KISS1, TAC3, and

TACR3, which are genes that only regulate secretion and/or

action of GnRH from hypothalamus or pituitary without

interfering development of olfactory track. In addition, normosmic

subjects were screened for mutations in LHb, in which a

homozygous deletion in exon 2 was previously described in a

male patient with a fertile eunuch variant of HH [26]. The coding

exons and exon-intron boundaries of these genes were PCR-

amplified, the PCR products were purified with ExoSAP-IT

treatment (Amersham Biosciences, Piscataway, NJ, USA), and bi-

directly sequenced using the ABI BigDyeTerminator Cycle

Sequencing Kit (v3.1) and ABI Prism 3730xl DNA Analyzer

automated sequencer (Applied Biosystems, Foster City, CA, USA).

The sequences were aligned and read with SequencherH 4.9

software (Gene Codes Corporation, Ann Arbor, MI, USA). All

primer sequences and PCR conditions are available upon request.

Ethics
The Ethics Committee of the Helsinki University Central

Hospital approved the study protocol, appropriate permissions

were provided from each university hospital in Finland, and all

subjects signed the written informed consent.

Statistical analysis
Statistical analyses were performed using IBM SPSS software

version 19.0 (SPSS Inc. software, Chicago, Illinois, USA). Fisher’s

exact test was utilized to compare categorical variables between

two groups, and two-sided P,0.05 was accepted to indicate

statistical significance.

Results

We investigated the phenotypic and genotypic features of

Finnish HH patients who underwent reversal of hypogonadotrop-

ism. Among the 32 probands (26 KS, 6 nHH) enrolled, seven were

observed to have had spontaneous testicular growth while on TRT

(2 KS and 3 nHH patients) or while off hormone therapy (1 KS

and 1 nHH) (Fig. 1). Furthermore, four patients (#11, 13, 18, and

21 in Fig. 1) had enlarged testes; however, they did not want to

cease TRT to further assess the reversal of HH. Three patients

without spontaneous testis growth (#7, #8, and #9; Fig.1) and

one who had received hCG (#26; Fig. 1), also had treatment

pauses (range, 2 to 6 months) but they did not display evidence for

reversal, and were therefore restarted on TRT due to symptoms of

hypogonadism and low serum reproductive hormone values.

Therefore six probands (2 KS and 4 nHH) were confirmed to

undergo reversal of HH, of which three were identified

prospectively after treatment withdrawal and three retrospectively.

Treatment histories and testicular volumes, sex hormone and

gonadotropin levels at the diagnosis of HH and after TRT pause

in these 6 probands with HH reversal are summarized in Figure 2

and Table 1. It is noteworthy that these 6 patients were exposed to

Reversal of Congenital HH
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androgens before reversal (Fig. 2). Thus, the frequency estimate of

HH reversal among KS patients was 8% (2/26). Although

frequency estimates of HH reversal differed significantly between

KS and nHH (4/6; 67%) subjects (P = 0.006), the frequency of

nHH reversals might be overestimated due to small number of

patients.

Among the 6 probands with verified reversal, the median age at

reversal of HH was 23 yrs, ranging from 21 to 39 yrs. None of the

probands with reversal had been treated for cryptorchidism or

micropenis in infancy. Detailed case histories of these patients are

described in supplement data (Text S1). Three men who were

prospectively identified as reversal variants (#1, #4, #6) (age, 24–

39 yrs) have had spontaneous testicular growth during TRT, and,

after cessation of the treatment for 6–12 months, maintained

normal T and gonadotropin levels (Table 1). It should be noted,

however, that the testicular enlargement in one patient on hCG

Figure 1. Assessment of the reversal of congenital hypogonadotropic hypogonadism (HH). Mean testicular volumes of HH patients were
measured at the time of the diagnosis (solid circles) and at participation in the current study (small line). We used the value 2 mL for testicular
volumes for cases #2, #6, #7, and #19 at diagnosis, because volumes were estimated to be ‘‘small’’ or ‘‘prepubertal’’ in medical records. Cases #21–
25 were previously treated with recombinant-FSH and hCG to induce spermatogenesis. Seven patients (cases #1, 4, 6–9, and 26) discontinued
hormone therapy, and 6 (cases #1–6) showed reversal of HH (4 during the treatment pause and 2 without TRT). In addition, #11, 13, 18, and 21 had
spontaneous testis growth but they refused to discontinue TRT.
doi:10.1371/journal.pone.0039450.g001

Figure 2. Schematic depicting time of diagnosis, treatment history, and reversal in 6 men with congenital hypogonadotropic
hypogonadism.
doi:10.1371/journal.pone.0039450.g002
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indicated treatment effect and not reversal of HH. Sperm analysis

of subject #1 showed normal sperm count (356106/mL). Two

patients with normosmic HH (#3 and #5) and one patient with

KS (#2) had had reversal already before participating in the

current study: They had been off treatment for several years, and,

during that time, had had no symptoms of hypogonadism.

However, subject #3 had begun to suffer from fatigue and

decreased libido, and he had low serum T (1.9 nmol/L), LH (1.5

IU/L) and FSH (0.8 IU/L) levels. Therefore, he was restarted on

TRT after 9 years of reversal (Fig. 2). Overall, three probands had

fathered a child during TRT (#1 and #4) or without it (#2).

Mutation screening in patients with reversal of HH
We have previously described detailed molecular genetic

features of the patients with KS [24]. The two KS probands with

reversal of HH both obtained molecular genetic diagnosis:

proband #1 from a previous study harbored a heterozygous

truncating mutation in CHD7, c.151C.T (p.Q51X) [24], and the

proband #2 had a heterozygous mutation in the intron 2 of

FGFR1, c.91+2T.A that destroys the conserved donor splice site

consensus sequence of exon 2 (http://www.cbs.dtu.dk/services/

NetGene2/). Of note, none of the three men with KAL1 mutation

[24] had features suggesting reversal of HH, whereas at least 1 out

of 6 (17%) of KS male patients with an FGFR1 mutation reversed

[24]. A high proportion of nHH subjects harbored compound

heterozygous mutations in GNRHR. The proband #3 had GNRHR

mutations c.416G.A (p.R139H) and c.785G.A (p.R262Q) that

both have been previously described in patients with HH (27–29).

His father and mother were unaffected heterozygous carriers of

the respective mutations. Proband #4 harbored the R262Q

mutation together with a c.924_926delCTT (p.del309F) mutation

absent from 200 controls [27]. His unaffected mother and father

were heterozygous carriers of the respective mutations. We did not

find mutations in the two remaining patients (#5 and #6) with

reversal of HH.

Discussion

We studied phenotypic and genotypic features of the patients

who have undergone reversal of congenital HH. In most cases the

reversal of HH took place soon after transition from pediatric to

adult healthcare, and thus, adolescent patients with congenital HH

should be thoroughly informed on the possibility of endogenous

puberty and spontaneous fertility in adulthood especially in

patients with normosmic HH. Indeed, our frequency estimate

for the reversal of HH among KS patients was 8%, which is in

accordance with the 10% reported in the US among patients with

congenital HH [6].

Consistent with previous reports [6,7,13], four subjects (#2, 3,

5, and #6) displayed reversal before the age of 25, and remained

eugonadal several years after cessation of the treatment. It may be

argued that their clinical presentation resembled extreme consti-

tutional delay of puberty (CDP). However, nHH subjects’

testosterone exposure had lasted for years before reversal, proband

#3 was later restarted on TRT due to a decline in serum T, and

the proband #2 presented with unilateral olfactory bulb aplasia.

Neither these clinical features, however, nor the fact that HH

diagnosis was confirmed by molecular genetic analyses in two

thirds of reversal patients, are consistent with CDP.

Two men with reversal of HH had fathered a child while on

TRT and one became a father when off Rx. Similar case reports

have been described previously [8,12,14]. Based on the data in

normal men [28], exogenous T should suppress rather than

initiate spermatogenesis. It is therefore tempting to speculate that,

following reversal of congenital HH, gonadotropin secretion is less

sensitive to exogenous T. This discrepancy may also result from

differences in T dosing when given for replacement therapy or for

male contraception.

Although we did not find common clinical features among

reversal variants that would have predicted the clinical course of

HH after adolescence, two reversal variants had mutations in

GNRHR. Once these data are added to the previous data on HH

reversals [6,15–17,20,29], GNRHR mutations are one of the

leading molecular genetic diagnoses among reversal cases.

Especially, two common GNRHR mutations, R262Q and

Q106R, have previously been associated with mild phenotypes

[15,17,29,30]. Our two patients both had an R262Q mutation

(compound heterozygotes R139H/R262Q and R262Q/del309F).

Therefore, it could be possible that HH patients with an R262Q

mutation in GNRHR are especially prone to reversal of HH.

For the first time, we demonstrate that a KS patient with a

truncating CHD7 mutation can undergo reversal of hypogonado-

tropism. A CHD7 mutation is found in .70% of patients with

CHARGE syndrome (coloboma, heart defect, atresia choanae,

retarded growth and development, genital hypoplasia, ear

anomalies/deafness) [31] and in ,5% of KS patients [32,33].

The latter are suggested to represent a mild end of CHARGE

phenotypic spectrum due to overlapping features of these

syndromes such as hypogonadism, anosmia, cleft lip and palate,

hearing impairment, and semicircular canal hypoplasia [32,33].

Table 1. Clinical and biochemical features of patients with congenital hypogonadotropic hypogonadism (HH) before and after
reversal of HH.

At diagnosis After reversal of HH

Subject Diagnosis
Mutated
Gene Age

T
(nM)

LH
(IU/L)

FSH
(IU/L)

Tvol
(mL) Age

Time
without Rx

T
(nM)

LH
(IU/L)

FSH
(IU/L)

Tvol
(mL)

1 KS CHD7 28 2.8 0.9 0.5 2 38 12 mo 12.0 2.6 2.8 16

2 KS FGFR1 19 2.7 1.7 1.5 ‘‘Small’’ 36 15 yrs 10.7 3.9 3.1 11

3 nHH GNRHR 18 1.4 0.8 0.9 5 22 3 mo 19.3 4.4 3.9 ‘‘Normal’’

4 nHH GNRHR 20 1.3 0.2 5 39 9 mo 13.6 3.9 2.9 25

5 nHH 18 1.7 2.9 0.5 7 38 16 yrs 19.0 3.8 2.3 25

6 nHH 17 1.7 0.1 0.6 ‘‘Small’’ 24 6 mo 10.1 3.3 4.1 14

Tvol, testicular volume; KS, Kallmann Syndrome; nHH, normosmic HH. Normal adult men reference range for testosterone (T) 10–38 nmol/L, for luteinizing hormone (LH)
1.7-8.6 IU/L, and for follicle-stimulating hormone (FSH) 1.5-12.4 IU/L.
doi:10.1371/journal.pone.0039450.t001
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The relatively mild phenotype of our patient with the truncating

mutation Q51X in CHD7 [24] demonstrates that nonsense

mutations are not always fully penetrant for CHARGE syndrome

[32]. A similar case was reported recently, where a girl with a

CHD7 mutation and had delayed pubertal development [34].

However, due to young age of this patient, it remained unsure

whether or not she entered puberty later in life. Anosmia in

CHARGE patients is suggested to predict the presence of HH

[35,36]. On the other hand, Feret et al. described one anosmic

male patient, with a CHD7 mutation, who had apparently normal

fertility [37]. This phenotypic variability may be inherent to

effect(s) of modifier genes, and/or environmental factors. Alter-

natively, CHD7 is one of the key genes for the formation of cranial

neural crest [38], which has been suggested to be the source of

,30% of GnRH neurons in mice [39]. Thus, it is possible, that

our patient had reduced (but not absent) GnRH cell number due

to disrupted development of neural crest, defective formation of

the olfactory system and subsequent misrouting of GnRH neurons,

or both. Interestingly, Chd7 haploinsufficiency in mice leads to

decreased expression of Fgfr1 during development, as well as

reduced Gnrh1 in the adult hypothalamus [40], suggesting that

proper CHD7 signaling is required both for normal GnRH

neurogenesis and GnRH signaling.

In conclusion, reversal of congenital HH is a relatively common

feature that typically takes place in early adulthood. Spontaneous

testicular growth during androgen therapy is highly indicative for

reversal of HH. Normosmic HH patients with a R262Q mutation

in GHRHR accompanied by other GNRHR mutation may be

prone to reversal of HH. We also show that patients with a

truncating CHD7 mutation or a splice-site mutation in FGFR1 can

undergo reversal. We recommend that all patients with congenital

HH should be informed by pediatricians before transition to adult

healthcare on the possibility of HH reversal.

Supporting Information
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(DOC)
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