141 research outputs found

    A Transcriptional Enhancer from the Coding Region of ADAMTS5

    Get PDF
    The revelation that the human genome encodes only approximately 25,000 genes and thus cannot account for phenotypic complexity has been one of the biggest surprises in the post-genomic era. However, accumulating evidence suggests that transcriptional regulation may be in large part responsible for this observed mammalian complexity. Consequently, there has been a strong drive to locate cis-regulatory regions in mammalian genomes in order to understand the unifying principles governing these regions, including their genomic distribution. Although a number of systematic approaches have been developed, these all discount coding sequence.Using the computational tool PRI (Pattern-defined Regulatory Islands), which does not mask coding sequence, we identified a regulatory region associated with the gene ADAMTS5 that encompasses the entirety of the essential coding exon 2. We demonstrate through a combination of chromatin immunoprecipitation and reporter gene studies that this region can not only bind the myogenic transcription factors MYOD and myogenin and the E-protein HEB but can also function as a very strong myogenic transcriptional enhancer.Thus, we report the identification and detailed characterization of an exonic enhancer. Ultimately, this leads to the interesting question of why evolution would be so parsimonious in the functional assignment of sequence

    Intriguing Balancing Selection on the Intron 5 Region of LMBR1 in Human Population

    Get PDF
    Background: The intron 5 of gene LMBR1 is the cis-acting regulatory module for the sonic hedgehog (SHH) gene. Mutation in this non-coding region is associated with preaxial polydactyly, and may play crucial roles in the evolution of limb and skeletal system. Methodology/Principal Findings: We sequenced a region of the LMBR1 gene intron 5 in East Asian human population, and found a significant deviation of Tajima’s D statistics from neutrality taking human population growth into account. Data from HapMap also demonstrated extended linkage disequilibrium in the region in East Asian and European population, and significantly low degree of genetic differentiation among human populations. Conclusion/Significance: We proposed that the intron 5 of LMBR1 was presumably subject to balancing selection during the evolution of modern human

    Identification and Characterization of Lineage-Specific Highly Conserved Noncoding Sequences in Mammalian Genomes

    Get PDF
    Vertebrate genome comparisons revealed that there are highly conserved noncoding sequences (HCNSs) among a wide range of species and many of which contain regulatory elements. However, recently emerged sequences conserved in specific lineages have not been well studied. Toward this end, we identified 8,198 primate and 21,128 specific HCNSs as representative ones among mammals from human–marmoset and mouse–rat comparisons, respectively. Derived allele frequency analysis of primate-specific HCNSs showed that these HCNSs were under purifying selection, indicating that they may harbor important functions. We selected the top 1,000 largest HCNSs and compared the lineage-specific HCNS-flanking genes (LHF genes) with ultraconserved element (UCE)-flanking genes. Interestingly, the majority of LHF genes were different from UCE-flanking genes. This lineage-specific set of LHF genes was more enriched in protein-binding function. Conversely, the number of LHF genes that were also shared by UCEs was small but significantly larger than random expectation, and many of these genes were involved in anatomical development as transcriptional regulators, suggesting that certain groups of genes preferentially recruit new HCNSs in addition to old HCNSs that are conserved among vertebrates. This group of LHF genes might be involved in the various levels of lineage-specific evolution among vertebrates, mammals, primates, and rodents. If so, the emergence of HCNSs in and around these two groups of LHF genes developed lineage-specific characteristics. Our results provide new insight into lineage-specific evolution through interactions between HCNSs and their LHF genes

    Direct functional consequences of ZRS enhancer mutation combine with secondary long range SHH signalling effects to cause preaxial polydactyly

    Get PDF
    AbstractSonic hedgehog (SHH) plays a central role in patterning numerous embryonic tissues including, classically, the developing limb bud where it controls digit number and identity. This study utilises the polydactylous Silkie (Slk) chicken breed, which carries a mutation in the long range limb-specific regulatory element of SHH, the ZRS. Using allele specific SHH expression analysis combined with quantitative protein analysis, we measure allele specific changes in SHH mRNA and concentration of SHH protein over time. This confirms that the Slk ZRS enhancer mutation causes increased SHH expression in the posterior leg mesenchyme. Secondary consequences of this increased SHH signalling include increased FGF pathway signalling and growth as predicted by the SHH/GREM1/FGF feedback loop and the Growth/Morphogen models. Manipulation of Hedgehog, FGF signalling and growth demonstrate that anterior-ectopic expression of SHH and induction of preaxial polydactyly is induced secondary to increased SHH signalling and Hedgehog-dependent growth directed from the posterior limb. We predict that increased long range SHH signalling acts in combination with changes in activation of SHH transcription from the Slk ZRS allele. Through analysis of the temporal dynamics of anterior SHH induction we predict a gene regulatory network which may contribute to activation of anterior SHH expression from the Slk ZRS

    Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice

    Get PDF
    We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans

    Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease

    Get PDF
    One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models
    • …
    corecore