1,382 research outputs found

    Nonlocal Effective Field Equations for Quantum Cosmology

    Full text link
    The possibility that the strength of gravitational interactions might slowly increase with distance, is explored by formulating a set of effective field equations, which incorporate the gravitational, vacuum-polarization induced, running of Newton's constant GG. The resulting long distance (or large time) behaviour depends on only one adjustable parameter ξ\xi, and the implications for the Robertson-Walker universe are calculated, predicting an accelerated power-law expansion at later times tξ1/Ht \sim \xi \sim 1/H.Comment: 9 page

    Electron spin relaxation via flexural phonon modes in semiconducting carbon nanotubes

    Full text link
    This work considers the g-tensor anisotropy induced by the flexural thermal vibrations in one-dimensional structures and its role in electron spin relaxation. In particular, the mechanism of spin-lattice relaxation via flexural modes is studied theoretically for localized and delocalized electronic states in semiconducting carbon nanotubes in the presence of magnetic field. The calculation of one-phonon spin-flip process predicts distinctive dependencies of the relaxation rate on temperature, magnetic field and nanotube diameter. Comparison with the spin relaxation caused by the hyperfine interaction clearly suggests the relative efficiency of the proposed mechanism at sufficiently high temperatures. Specifically, the longitudinal spin relaxation time in the semiconducting carbon nanotubes is estimated to be as short as 30 microseconds at room temperature.Comment: 18 pages, 7 figure

    First Principles Analysis of Electron-Phonon Interaction in Graphene

    Full text link
    The electron-phonon interaction in monolayer graphene is investigated by using density functional perturbation theory. The results indicate that the electron-phonon interaction strength is of comparable magnitude for all four in-plane phonon branches and must be considered simultaneously. Moreover, the calculated scattering rates suggest an acoustic phonon contribution that is much weaker than previously thought, revealing the role of optical phonons even at low energies. Accordingly it is predicted, in good agreement with a recent measurement, that the intrinsic mobility of graphene may be more than an order of magnitude larger than the high values reported in suspended samples.Comment: 12 pages, 4 figure

    Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion

    Full text link
    Transverse parton momentum dependent distribution functions (TMDs) of the nucleon are studied in a covariant model, which describes the intrinsic motion of partons in terms of a covariant momentum distribution. The consistency of the approach is demonstrated, and model relations among TMDs are studied. As a byproduct it is shown how the approach allows to formulate the non-relativistic limit.Comment: 16 page

    Stationarity-conservation laws for certain linear fractional differential equations

    Full text link
    The Leibniz rule for fractional Riemann-Liouville derivative is studied in algebra of functions defined by Laplace convolution. This algebra and the derived Leibniz rule are used in construction of explicit form of stationary-conserved currents for linear fractional differential equations. The examples of the fractional diffusion in 1+1 and the fractional diffusion in d+1 dimensions are discussed in detail. The results are generalized to the mixed fractional-differential and mixed sequential fractional-differential systems for which the stationarity-conservation laws are obtained. The derived currents are used in construction of stationary nonlocal charges.Comment: 28 page

    Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes

    Full text link
    We study the fractional gravity for spacetimes with non-integer dimensions. Our constructions are based on a geometric formalism with the fractional Caputo derivative and integral calculus adapted to nonolonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange-Finsler and Hamilton-Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, fractional ellipsoid gravitational configurations and imbedding of such objects in fractional solitonic backgrounds.Comment: latex2e, 11pt, 40 pages with table of conten

    Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17

    Get PDF
    Carbonic anhydrase IX (CA IX) is a transmembrane protein whose expression is strongly induced by hypoxia in a broad spectrum of human tumours. It is a highly active enzyme functionally involved in both pH control and cell adhesion. Its presence in tumours usually indicates poor prognosis. Ectodomain of CA IX is detectable in the culture medium and body fluids of cancer patients, but the mechanism of its shedding has not been thoroughly investigated. Here, we analysed several cell lines with natural and ectopic expression of CA IX to show that its ectodomain release is sensitive to metalloprotease inhibitor batimastat (BB-94) and that hypoxia maintains the normal rate of basal shedding, thus leading to concomitant increase in cell-associated and extracellular CA IX levels. Using CHO-M2 cells defective in shedding, we demonstrated that the basal CA IX ectodomain release does not require a functional TNFα-converting enzyme (TACE/ADAM17), whereas the activation of CA IX shedding by both phorbol-12-myristate-13-acetate and pervanadate is TACE-dependent. Our results suggest that the cleavage of CA IX ectodomain is a regulated process that responds to physiological factors and signal transduction stimuli and may therefore contribute to adaptive changes in the protein composition of tumour cells and their microenvironment

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    Get PDF
    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q2>1 (GeV/c)2Q^2>1~({\rm GeV}/c)^2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/cc polarised muon beam impinging on a polarised 6^6LiD target. By analysing the full range in hadron transverse momentum pTp_{\rm T}, the different pTp_{\rm T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g\Delta g/g is evaluated at leading order in pQCD at a hard scale of μ2=Q2=3(GeV/c)2\mu^2= \langle Q^2 \rangle = 3 ({\rm GeV}/c)^2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, xgx_{\rm g}, covering the range 0.04 ⁣< ⁣xg ⁣< ⁣0.280.04 \!<\! x_{ \rm g}\! <\! 0.28~ and does not exhibit a significant dependence on xgx_{\rm g}. The average over the three intervals, Δg/g=0.113±0.038(stat.)±0.036(syst.)\langle \Delta g/g \rangle = 0.113 \pm 0.038_{\rm (stat.)}\pm 0.036_{\rm (syst.)} at xg0.10\langle x_{\rm g} \rangle \approx 0.10, suggests that the gluon polarisation is positive in the measured xgx_{\rm g} range.Comment: 14 pages, 6 figure

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure
    corecore