research

Stationarity-conservation laws for certain linear fractional differential equations

Abstract

The Leibniz rule for fractional Riemann-Liouville derivative is studied in algebra of functions defined by Laplace convolution. This algebra and the derived Leibniz rule are used in construction of explicit form of stationary-conserved currents for linear fractional differential equations. The examples of the fractional diffusion in 1+1 and the fractional diffusion in d+1 dimensions are discussed in detail. The results are generalized to the mixed fractional-differential and mixed sequential fractional-differential systems for which the stationarity-conservation laws are obtained. The derived currents are used in construction of stationary nonlocal charges.Comment: 28 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020