8,535 research outputs found

    Improved Parameters and New Lensed Features for Q0957+561 from WFPC2 Imaging

    Get PDF
    New HST WFPC2 observations of the lensed double QSO 0957+561 will allow improved constraints on the lens mass distribution and hence will improve the derived value of H0_0. We first present improved optical positions and photometry for the known components of this lens. The optical separation between the A and B quasar images agrees with VLBI data at the 10 mas level, and the optical center of the primary lensing galaxy G1 coincides with the VLBI source G' to within 10 mas. The best previous model for this lens (Grogin and Narayan 1996) is excluded by these data and must be reevaluated. Several new resolved features are found within 10\arcsec of G1, including an apparent fold arc with two bright knots. Several other small galaxies are detected, including two which may be multiple images of each other. We present positions and crude photometry of these objects.Comment: 7 pages including 2 postscript figures, LaTeX, emulateapj style. Also available at http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm

    Dark Matter Scaling Relations

    Get PDF
    We establish the presence of a dark matter core radius, for the first time in a very large number of spiral galaxies of all luminosities. Contrary to common opinion we find that the sizes of these cores and the " DM core problem" are bigger for more massive spirals. As a result the Burkert profile provides an excellent mass model for dark halos around disk galaxies. Moreover, we find that the spiral dark matter core densities ρ0\rho_{0} and core radii r0r_{0} lie in the same scaling relation ρ0=4.5×102(r0/kpc)2/3Mpc3\rho_{0}=4.5\times 10^-2 (r_{0}/kpc)^{-2/3} M_{\odot}pc^{-3} of dwarf galaxies with core radii upto ten times more smaller.Comment: 4 pages, 4 figures, Accepted for Publication in Apj Let

    The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments

    Get PDF
    In this study we use simulations of 1283^3 particles to study the ellipticity and orientation of clusters of galaxies in N-body simulations of differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2),anddensityparameters(), and density parameters (\Omega_0 = 0.2to1.0).Furthermore,unlikemosttheoreticalstudieswemimicmostobserversbyremovingallparticleswhichlieatdistancesgreaterthan21/hMpcfromtheclustercenterofmass.Wecomputedtheaxialratioandtheprincipalaxesusingtheinertiatensorofeachcluster.Themeanellipticityofclustersincreasesstronglywithincreasing to 1.0). Furthermore, unlike most theoretical studies we mimic most observers by removing all particles which lie at distances greater than 2 1/h Mpc from the cluster center of mass. We computed the axial ratio and the principal axes using the inertia tensor of each cluster. The mean ellipticity of clusters increases strongly with increasing n.Wealsofindthatclusterstendtobecomemoresphericalatsmallerradii.Wecomparedtheorientationofaclustertotheorientationofneighboringclustersasafunctionofdistance(correlation).Inaddition,weconsideredwhetheraclustersmajoraxistendstoliealongthelineconnectingittoaneighboringcluster,asafunctionofdistance(alignment).Bothalignmentsandcorrelationswerecomputedinthreedimensionsandinprojectiontomimicobservationalsurveys.Ourresultsshowthatsignificantalignmentsexistforallspectraatsmallseparations(. We also find that clusters tend to become more spherical at smaller radii. We compared the orientation of a cluster to the orientation of neighboring clusters as a function of distance (correlation). In addition, we considered whether a cluster's major axis tends to lie along the line connecting it to a neighboring cluster, as a function of distance (alignment). Both alignments and correlations were computed in three dimensions and in projection to mimic observational surveys. Our results show that significant alignments exist for all spectra at small separations (D < 15 h^{-1}Mpc)butdropsoffatlargerdistanceinastrongly Mpc) but drops off at larger distance in a strongly n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised manuscript, accepted for publication in Ap

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Trend in ice moistening the stratosphere – constraints from isotope data of water and methane

    Get PDF
    Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991–2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere

    The Tucana/Horologium, Columba, AB Doradus, and Argus Associations: New Members and Dusty Debris Disks

    Get PDF
    We propose 35 star systems within ~70 pc of Earth as newly identified members of nearby young stellar kinematic groups; these identifications include the first A- and late-B type members of the AB Doradus moving group and field Argus Association. All but one of the 35 systems contain a bright solar- or earlier-type star that should make an excellent target for the next generation of adaptive optics (AO) imaging systems on large telescopes. AO imaging has revealed four massive planets in orbit around the {\lambda} Boo star HR 8799. Initially the planets were of uncertain mass due in large part to the uncertain age of the star. We find that HR 8799 is a likely member of the ~30 Myr old Columba Association implying planet masses ~6 times that of Jupiter. We consider Spitzer Space Telescope MIPS photometry of stars in the ~30 Myr old Tucana/Horologium and Columba Associations, the ~40 Myr old field Argus Association, and the ~70 Myr old AB Doradus moving group. The percentage of stars in these young stellar groups that display excess emission above the stellar photosphere at 24 and 70 \mu m wavelengths - indicative of the presence of a dusty debris disk - is compared with corresponding percentages for members of 11 open clusters and stellar associations with ages between 8 and 750 Myr, thus elucidating the decay of debris disks with time.Comment: Accepted for publication in Ap

    Sorting live stem cells based on Sox2 mRNA expression.

    Get PDF
    PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner

    Cluster Ellipticities as a Cosmological Probe

    Full text link
    We investigate the dependence of ellipticities of clusters of galaxies on cosmological parameters using large-scale cosmological simulations. We determine cluster ellipticities out to redshift unity for LCDM models with different mean densities Ωm\Omega_m and amplitudes of mass fluctuation σ8,0\sigma_{8,0}. The mean ellipticity increases monotonically with redshift for all models. Larger values of σ8,0\sigma_{8,0}, i.e., earlier cluster formation time, produce lower ellipticities. The dependence of ellipticity on Ωm\Omega_m is relatively weak in the range 0.2Ωm0.50.2 \leq \Omega_m \leq 0.5 for high mass clusters. The mean ellipticity eˉ(z)\bar{e}(z) decreases linearly with the amplitude of fluctuations at the cluster redshift zz, nearly independent of Ωm\Omega_m; on average, older clusters are more relaxed and are thus less elliptical. The distribution of ellipticities about the mean is approximated by a Gaussian, allowing a simple characterization of the evolution of ellipticity with redshift as a function of cosmological parameters. At z=0z=0, the mean ellipticity of high mass clusters is approximated by eˉ(z=0)=0.2480.069σ8,0+0.013Ωm,0\bar{e}(z=0) = 0.248-0.069 \sigma_{8,0} + 0.013 \Omega_{m,0}. This relation opens up the possibility that, when compared with future observations of large cluster samples, the mean cluster ellipticity and its evolution could be used as a new, independent tool to constrain cosmological parameters, especially the amplitude of mass fluctuations, σ8,0\sigma_{8,0}.Comment: 16 pages, 4 figure

    Scaling of the superfluid density in superfluid films

    Full text link
    We study scaling of the superfluid density with respect to the film thickness by simulating the xyx-y model on films of size L×L×HL \times L \times H (L>>HL >> H) using the cluster Monte Carlo. While periodic boundary conditions where used in the planar (LL) directions, Dirichlet boundary conditions where used along the film thickness. We find that our results can be scaled on a universal curve by introducing an effective thickness. In the limit of large HH our scaling relations reduce to the conventional scaling forms. Using the same idea we find scaling in the experimental results using the same value of ν=0.6705\nu = 0.6705.Comment: 4 pages, one postscript file replaced by one Latex file and 5 postscript figure
    corecore