305 research outputs found

    Nutritional reserves of Vochysiaceae seeds: chemical diversity and potential economic uses

    Get PDF
    Contents of proteins, carbohydrates and oil of seeds of 57 individuals of Vochysiaceae, involving one species of Callisthene, six of Qualea, one of Salvertia and eight of Vochysia were determined. The main nutritional reserves of Vochysiaceae seeds are proteins (20% in average) and oils (21. 6%). Mean of carbohydrate contents was 5. 8%. Callisthene showed the lowest protein content (16. 9%), while Q. cordata was the species with the highest content (30% in average). The contents of ethanol soluble carbohydrates were much higher than those of water soluble carbohydrates. Oil contents lay above 20% for most species (30. 4% in V. pygmaea and V. pyramidalis seeds). The predominant fatty acids are lauric (Q. grandiflora), oleic (Qualea and Salvertia) or acids with longer carbon chains (Salvertia and a group of Vochysia species). The distribution of Vochysiaceae fatty acids suggests for seeds of some species an exploitation as food sources (predominance of oleic acid), for other species an alternative to cocoa butter (high contents or predominance of stearic acid) or the production of lubricants, surfactants, detergents, cosmetics and plastic (predominance of acids with C20 or C22 chains) or biodiesel (predominance of monounsaturated acids). The possibility of exploitation of Vochysiaceae products in a cultivation regimen and in extractive reserves is discussed.Teores de proteínas, carboidratos solúveis e óleos de sementes de 57 indivíduos de Vochysiaceae, compreendendo uma espécie de Callisthene, seis de Qualea, uma de Salvertia e oito de Vochysia foram determinados. As principais reservas de sementes de Vochysiaceae são proteínas (20% em média) e óleos (21, 6%). A média dos teores de carboidratos foi de 5, 8%. Callisthene apresentou o mais baixo teor de proteínas (16, 9%), enquanto Q. cordata foi a espécie com o mais elevado teor (30% em média). Teores de carboidratos solúveis em etanol foram muito superiores aos solúveis em água. Os teores de óleo foram superiores a 20% na maioria das espécies (30, 4% em V. pygmaea e V. pyramidalis). Ácidos graxos predominantes foram láurico (Q. grandiflora), oleico (Qualea e Salvertia) ou ácidos com cadeias mais longas (Salvertia e um grupo de espécies de Vochysia). A distribuição de ácidos graxos de Vochysiaceae sugere para as sementes de algumas espécies o uso em alimentação (predominância de ácido oléico), para outras, uma alternativa à manteiga de cacau (teores elevadosde ácido esteárico) ou produção de lubrificantes, tensoativos, detergentes, cosméticos e plásticos (predominância de ácidoscom cadeias C20 ou C22) ou biodiesel (predominância de ácidos monoinsaturados). Discute-se a possibilidade de aproveitamento de produtos de Vochysiaceae em regime de cultivo eem reservas extrativas.Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq

    Socio-Economic Disparities in the Burden of Seasonal Influenza: The Effect of Social and Material Deprivation on Rates of Influenza Infection

    Get PDF
    There is little empirical evidence in support of a relationship between rates of influenza infection and level of material deprivation (i.e., lack of access to goods and services) and social deprivation (i.e. lack of social cohesion and support).Using validated population-level indices of material and social deprivation and medical billing claims for outpatient clinic and emergency department visits for influenza from 1996 to 2006, we assessed the relationship between neighbourhood rates of influenza and neighbourhood levels of deprivation using Bayesian ecological regression models. Then, by pooling data from neighbourhoods in the top decile (i.e., most deprived) and the bottom decile, we compared rates in the most deprived populations to the least deprived populations using age- and sex-standardized rate ratios.Deprivation scores ranged from one to five with five representing the highest level of deprivation. We found a 21% reduction in rates for every 1 unit increase in social deprivation score (rate ratio [RR] 0.79, 95% Credible Interval [CrI] 0.66, 0.97). There was little evidence of a meaningful linear relationship with material deprivation (RR 1.06, 95% CrI 0.93, 1.24). However, relative to neighbourhoods with deprivation scores in the bottom decile, those in the top decile (i.e., most materially deprived) had substantially higher rates (RR 2.02, 95% Confidence Interval 1.99, 2.05).Though it is hypothesized that social and material deprivation increase risk of acute respiratory infection, we found decreasing healthcare utilization rates for influenza with increasing social deprivation. This finding may be explained by the fewer social contacts and, thus, fewer influenza exposure opportunities of the socially deprived. Though there was no evidence of a linear relationship with material deprivation, when comparing the least to the most materially deprived populations, we observed higher rates in the most materially deprived populations

    Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril L.

    Get PDF
    During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and β-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source–sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey

    Growth and properties of GaSbBi alloys

    Get PDF
    Molecular-beam epitaxy has been used to grow GaSb 1− x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36 meV/%Bi or 210 meV per 0.01 Å change in lattice constant

    Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato

    No full text
    Pectin is a main component of the plant cell wall and is the most complex family of polysaccharides in nature. Its composition is essential for the normal growth and morphology pattern, as demonstrated by pectin-defective mutant phenotypes. Besides this basic role in plant physiology, in tomato, pectin structure contributes to very important quality traits such as fruit firmness. Sixty-seven different enzymatic activities have been suggested to be required for pectin biosynthesis, but only a few genes have been identified and studied so far. This study characterized the tomato galacturonosyltransferase (GAUT) family and performed a detailed functional study of the GAUT4 gene. The tomato genome harbours all genes orthologous to those described previously in Arabidopsis thaliana, and a transcriptional profile revealed that the GAUT4 gene was expressed at higher levels in developing organs. GAUT4-silenced tomato plants exhibited an increment in vegetative biomass associated with palisade parenchyma enlargement. Silenced fruits showed an altered pectin composition and accumulated less starch along with a reduced amount of pectin, which coincided with an increase in firmness. Moreover, the harvest index was dramatically reduced as a consequence of the reduction in the fruit weight and number. Altogether, these results suggest that, beyond its role in pectin biosynthesis, GAUT4 interferes with carbon metabolism, partitioning, and allocation. Hence, this cell-wall-related gene seems to be key in determining plant growth and fruit production in tomato

    Quantum computing and materials science : a practical guide to applying quantum annealing to the configurational analysis of materials

    Get PDF
    Using quantum computers for computational chemistry and materials science will enable us to tackle problems that are intractable on classical computers. In this paper, we show how the relative energy of defective graphene structures can be calculated by using a quantum annealer. This simple system is used to guide the reader through the steps needed to translate a chemical structure (a set of atoms) and energy model to a representation that can be implemented on quantum annealers (a set of qubits). We discuss in detail how different energy contributions can be included in the model and what their effect is on the final result. The code used to run the simulation on D-Wave quantum annealers is made available as a Jupyter Notebook. This Tutorial was designed to be a quick-start guide for the computational chemists interested in running their first quantum annealing simulations. The methodology outlined in this paper represents the foundation for simulating more complex systems, such as solid solutions and disordered systems

    Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO<inf>2</inf> in the tropical tree species Alchornea glandulosa under heatwave conditions

    Get PDF
    Factorial experiments of combined warming and elevated CO2 are rarely performed but essential for our understanding of plant physiological responses to climate change. Studies of tropical species are particularly lacking, hence we grew juvenile trees of Alchornea glandulosa under conditions of elevated temperature (+1.5 °C, eT) and elevated CO2 (+400ppm, eC) in a factorial open top chamber experiment. We addressed three questions: i) To what extent does stomatal conductance (gs) reduce with eT and eC treatments?; ii) Is there an interactive effect of eT and eC on gs?; iii) Does reduced gs as a result of eT and/or eC cause an increase in leaf temperature?; iv) Do the photosynthetic temperature optima (Topt) and temperature response of photosynthetic capacities (Vcmax, Jmax) shift with higher growth temperatures? The experiment was performed during an anomalously hot period, including a heatwave during the acclimation period. Our key findings are that: 1) the eT treatment reduced gs more than the eC treatment, 2) reduced gs caused an increase in leaf temperatures, and 3) net photosynthesis and photosynthetic capacities showed very high temperature tolerances with no evidence for acclimation to the eT treatment. Our results suggest that A. glandulosa may be able to cope with increases in air temperatures, however reductions in gs may cause higher leaf temperatures beyond those induced by an air temperature rise over the coming century

    Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Get PDF
    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In 2 O 3 , SnO 2 , and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In 2 O 3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO 2 , the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In 2 O 3 , but also in SnO 2 and ZnO

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time
    corecore