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Background Nineteen mass vaccination clinics were established in

Montreal, Canada, as part of the 2009 influenza A/H1N1p

vaccination campaign. Although approximately 50% of the

population was vaccinated, there was a considerable variation in

clinic performance and community vaccine coverage.

Objective To identify community- and clinic-level predictors of

vaccine uptake, while accounting for the accessibility of clinics from

the community of residence.

Methods All records of influenza A/H1N1p vaccinations

administered in Montreal were obtained from a vaccine registry.

Multivariable regression models, specifically Bayesian gravity

models, were used to assess the relationship between vaccination

rates and clinic accessibility, clinic-level factors, and community-

level factors.

Results Relative risks compare the vaccination rates at the

variable’s upper quartile to the lower quartile. All else being equal,

clinics in areas with high violent crime rates, high residential density,

and high levels of material deprivation tended to perform poorly

(adjusted relative risk [ARR]: 0�917, 95% CI [credible interval]:

0�915, 0�918; ARR: 0�663, 95% CI: 0�660, 0�666, ARR: 0�649, 95% CI:

0�645, 0�654, respectively). Even after controlling for accessibility

and clinic-level predictors, communities with a greater proportion

of new immigrants and families living below the poverty level

tended to have lower rates (ARR: 0�936, 95% CI: 0�913, 0�959; ARR:
0�918, 95% CI: 0�893, 0�946, respectively), while communities with a

higher proportion speaking English or French tended to have higher

rates (ARR: 1�034, 95% CI: 1�012, 1�059).
Conclusion In planning future mass vaccination campaigns, the

gravity model could be used to compare expected vaccine uptake for

different clinic location strategies.

Keywords Influenza vaccine, mass vaccination, public health.
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Background

In the summer of 2009, the Canadian Public Health Agency

ordered over 50 million doses of the influenza A/H1N1p

vaccine, enough to administer, free of charge, one dose to

each Canadian, or two doses to approximately 75% of the

population. The timing of vaccine distribution to local health

departments allowed for the administration of vaccines by

early November.1 In Montreal, Canada, nineteen mass

vaccination clinics (MVC) were established throughout the

city with the choice of location guided by site availability and

capacity. Most clinics opened their doors to the general

public on November 5, 2009, 2 weeks after the start of the

second wave of the pandemic in Canada.2 Vaccinations were

delivered in priority sequence, with the goal of vaccinating at

least 70% of the population. Montreal residents were free to

attend any MVC in Montreal, which were open from 8 am to

8 pm, 7 days per week. By the end of the vaccination

campaign, approximately 50% of Montreal’s 1�8 million

residents had been vaccinated. Despite the relatively high

coverage rate (e.g., compared to France, 8%, and the United

States, 27%),3,4 there was a considerable variation in vaccine

uptake across Montreal neighborhoods.5

Previous studies of pandemic A/H1N1 vaccination have

identified population-level determinants of vaccine coverage,

for example Ref. 6, without addressing the accessibility and

other characteristics of healthcare services. A simultaneous

analysis of the geographic variation of population charac-

teristics and MVC-level characteristics could elucidate pre-

dictors of regional vaccine coverage and could inform a more
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coordinated planning of mass vaccination campaigns. Grav-

ity models 7 are well suited to this task as they examine the

features of origin and destination that affect traffic, or flow,

from origin to destination. Typically, the shorter the distance

between origin and destination and the larger the mass of the

origin/destination (e.g., population size/clinic capacity), the

greater the “gravitational pull” or flow between the two. In

this study, gravity models were used to examine the

characteristics of place of residence and characteristics of

MVC that were associated with flow of individuals to be

vaccinated against influenza A/H1N1p. Using a simple

example, we illustrate how the findings from this study

could be used to inform the placement of MVC.

Materials and methods

Data
The pandemic A/H1N1 vaccination records were obtained

from the National Public Health Institute of Qu�ebec (Institut

national de sant�e publique du Qu�ebec). Each record contains

data collected at the MVC at the time of vaccination. These

include the date of vaccination, the individual’s address, age,

sex, and any condition (chronic disease or pregnancy) that

granted the individual priority status. Although chronic

diseases and pregnancy were self-reported, proof of these

conditions was often requested while vaccination was

restricted to priority groups. Individuals that were vaccinated

at non-MVC locations (e.g., healthcare workers vaccinated at

their place of work) were excluded from the analysis, that is,

from both the numerators and the denominators of the

vaccination rates.

Vaccination records were aggregated at the level of both

census tract (CT) and MVC, as the measure of interest is the

number of people from each CT that were vaccinated at each

MVC. The CT unit of analysis represented a compromise

between the statistical precision of vaccination rates of CT

populations at each MVC and the accuracy of measurement

of travel time between place of residence and MVC. Census

data were suppressed or missing for 15 of 515 CTs of the

Island of Montreal; these CTs were omitted from the analysis

as the percentage of the total vaccinations from these areas

was under 0�3%.

The research literature on the community-level determi-

nants of vaccine uptake informed the selection of CT-level

variables to include as covariates in the regression model

(Description and Reference(s), Table 1). Based on the

literature, the model should include a marker of material

deprivation (unemployment, poverty, post-secondary edu-

cation, or material deprivation index), the proportion of the

population that had recently immigrated (new immigrant),

the proportion of individuals that spoke either French or

English (official languages), and the proportion of the

population that was male. Other covariates included the

proportion of the population belonging to each priority

group (i.e., pregnant women; chronically ill under 65 years

of age; age groups: 6 months to 4 years, 5–19 years, and

65 years and older). Data on CT population sizes and

demographics were obtained from the 2006 Canadian

census.8 The number of pregnancies and chronically ill

individuals under 65 years of age were estimated using

survey and demographic data, as described by Brien et al.5

The MVC variables and their descriptions are presented in

Table 2. The minimum time to drive from the CT centroid

to the MVC address was estimated using the Google

Directions API.9 In addition to the time to drive from CT

to MVC, time to travel by public transit (bus and subway

systems) was considered. These data were obtained from the

MADITUC group (Mod�ele d’Analyse D�esagr�eg�ee des

Itin�eraires de Transport Urbain Collectif). (G. Bisaillon,

personal communication) Trip durations were calculated

using empirically based estimates of point-to-point travel

time (e.g., station-to-station time for subway-only trip), and

official headways in the case of multileg trips. Time to walk

to and from transit access points (bus stops or subway

stations) was excluded from trip time estimates.

Statistical analysis
Gravity models are multivariable regression models that

simultaneously assess the effect of characteristics of origin

(place of residence) and destination (MVC) on flow from

origin to destination. The outcome in the models was the

number of people living in a CT that were vaccinated at a

MVC. The outcome variable (Yij) represents the flow from

CT i to MVC j. In addition to origin and destination

variables, the gravity model accounts for accessibility of the

destination from the origin. In this context, accessibility of a

MVC from a CT is a function of the travel time and the MVC

size (i.e., vaccination capacity). Congdon7 introduced a

modification to accessibility, called relative accessibility,

because the decision to attend a MVC depends not only on

its accessibility, but also on the accessibility of other MVC.

The gravity model with MVC variables and CT variables

can be expressed as:

Yij � PoissonðlijÞ

logðlijÞ ¼ b0 þ logðPopulationiÞ þ logðRijÞ þ bCTXi

þ bMVCZj;

Rij ¼ AijP
m
Aim

; Aij ¼
Cd
j

dcij

where lij is the expected flow from CT i to MVC j, Xi is the

vector of CT variable values for CT i, Zj is a vector of MVC

variable values for MVC j, Rij is the relative accessibility, Aij is

Charland et al.
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the accessibility of MVC j from CT i, Cj is the cumulative

MVC capacity (maximum total number of vaccinations that

could be administered over the entire vaccination campaign),

and dij is the travel time from CT i to MVC j.

We also considered hierarchical gravity models with both

spatially correlated and exchangeable CT random effects to

account for any unmeasured predictors of CT vaccine

coverage that vary with and without spatial structure,

respectively.10 The spatially correlated random effects were

assigned a conditional autoregressive (CAR) prior.11 All

models had, as offsets, the log-transformed CT population

size and relative accessibility. All multivariable models

Table 2. Variables and data sources describing the areas (in 2009) in which the MVC were placed

Variable name Source Description Median (1st quartile, 3rd quartile)

Violent crime rate Service de police de la

ville de Montr�eal

Number of violent crimes per 10 000 population 119�3 (103�6, 188�1)

Material deprivation index Census 2006 Percentile for CT in which the MVC is placed 0�57 (0�35, 0�75)
Residential density Census 2006 Number of dwelling units per squared kilometer

of the CT in which the MVC is located

(10 000 DU/km2*)

0�24 (0�083, 0�37)

Capacity Institut national de sant�e

publique du Qu�ebec

Maximum total number of vaccinations

that could be administered during

the vaccination campaign

84 480 (72 960, 135 800)

*Dwelling units per square kilometer.

Table 1. Variables and data sources for the Montreal census tracts in 2009

Variable Source Description

Median (1st quartile,

3rd quartile)

Population Census 2006 Number of CT residents excluding individuals that were

vaccinated at non-MVC locations

3140 (2142, 4261)

Material

deprivation

index

Census 2006 Index comprising the proportion of the population

without high school diploma, employment to population

ratio, and average income. Expressed as a percentile/1005

0�51 (0�31, 71�0)

Unemployment Census 2006 Unemployment rate23,30 0�083 (0�062, 0�11)
Post-secondary

education

Census 2006 Proportion with a post-secondary education22,25,28,30,32 0�68 (0�58, 0�76)

Poverty Census 2006 Proportion of families that are living below the poverty level,

that is, income <63%
of the average income in their community-size,

family-size strata5,36

0�22 (0�15, 0�31)

New immigrants Census 2006 Proportion of the population that recently immigrated5,29,34 0�056 (0�033, 0�091)
Official languages Census 2006 Proportion of the population (≥15 years) speaking English or French34,36 0�016 (0�0070, 0�034)
Ages 0–4 Census 2006 Proportion of the population that is 4 years old or younger3,20,26,27,29,30,33 0�043 (0�036, 0�050)
Ages 5–19 Census 2006 Proportion of the population that is 5–19 years old (inclusive)3,20,26,27,29,30,33 0�15 (0�12, 0�18)
Ages 20–64 Census 2006 Proportion of the population that is 20–64 years old

(inclusive)3,20,26,27,29,30,33
0�64 (0�60, 0�71)

Ages 65 plus Census 2006 Proportion of the population that is 65 years old or older3,20,26,27,29,30,33 0�14 (0�10, 0�18)
Chronic conditions Estimated from CCHS*

and demographic

variables**

Proportion of the population under 65 years of age with a chronic

condition3,22,26,29,30
0�134 (0�129, 0�137)

Pregnant Estimated from CCHS

and demographic

variables

Proportion of the population that is pregnant3,26,30 0�011 (0�0094, 0�013)

*Canadian Community Health Survey.31

**Described by Brien et al.5

Pandemic influenza vaccine coverage
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without random effects (i.e., pooled regressions) adjusted for

the proportion of the population belonging to each priority

group and the proportion of males in the CT. Due to the

complexity of the hierarchicalmodels, for example the spatially

correlated random effects, all models were implemented in a

Bayesian framework using Markov Chain Monte Carlo tech-

niques. See Appendix 1 for details of the statistical analysis.

Application of gravity model to assess alternative geographic
distributions of MVC
Using the gravity model as a predictive model, we deter-

mined whether an alternative location for one of the MVC

would likely improve vaccine uptake. The new MVC had the

same total capacity but was more centrally located in a

community with a lower residential density, less material

deprivation, and a lower violent crime rate. As inputs in the

gravity model to predict the number of vaccinations at this

new clinic, we used the drive times from all communities to

the clinic, as well as the area’s residential density, violent

crime rate, and material deprivation.

Implementation
A Bayesian approach was used with minimally informative

normal prior distributions centered at the null, that is, N(0,

1000), for all regression coefficients except the intercept

which was assigned a non-informative prior. For the

hierarchical models, the inverse variances from the random

effects prior distributions were assigned gamma(0�1, 0�0001)
priors. All CT and MVC variables were centered to improve

convergence of the Markov Chain Monte Carlo (MCMC)

sequences. Three chains were produced, each with 15 000

iterations for the multivariable (pooled) regression models

and up to 100 000 iterations for the hierarchical models. The

first half of the MCMC chains were discarded as burn-in,

keeping every 5th estimate in the chain for posterior

summaries of the regression parameters of the model. The

potential scale reduction factor was used to assess conver-

gence.12,13 The deviance information criterion (DIC) guided

model selection. Many of the candidate CT variables were

highly correlated (correlation > 0�5), 14,15 which could

potentially introduce multicollinearity and make the inter-

pretation of the results challenging. Avoiding multicollin-

earity was prioritized in constructing candidate models, for

example, no more than one variable representing material

deprivation was included in a model. All models were run in

WinBUGS 1.4 16 and R 2.13.2 17 software using the

R2Winbugs package 18 to link WinBUGS and R.

Sensitivity analysis
Three of the 19 MVC were open for <12 days, while most

others were open for the full 44 days of the mass vaccination

campaign. Although the MVC capacity variable in the

relative accessibility term would reflect this, the time period

during which these MVC were open could be qualitatively

different than the time period during which they were closed.

Analyses were carried out both with and without these MVC.

In addition, sensitivity analyses were conducted on the mode

of travel, carrying out analyses using, first, time to drive from

CT to MVC and then using time to travel by public transit.

We also assessed sensitivity of the results to the choice of

prior distributions by re-running the analyses with alterna-

tive priors (Table A3, footnotes).

Results

There were 741 237 vaccinations administered at Montreal

MVC between November 5, and December 18, 2009. Overall

MVC performance (measured by the total number of

vaccinations at a MVC divided by the total MVC capacity)

varied from 0�17 to 0�75 with an average performance of

0�44. CT vaccine coverage ranged from 0�22 to 0�78 with an

average coverage of 0�44 (Figure 1). Approximately 90% of

the observed driving times to MVC from place of residence

were <15 minutes (Figure 2A), although the median of the

distribution of driving times for all CT/MVC pairs was

20 minutes (Figure 2B).

Tables of model fit and results of the sensitivity analyses

are presented in Tables A1–A4. The results of the “best”

gravity model, according to the DIC (Table A1), are shown

in Table 3. This model was based on time to drive from CT

to MVC and included CT-level exchangeable and spatially

correlated random effects, the percentage of the CT popu-

lation speaking English/French, the proportion living below

the poverty level, the proportion that are new immigrants,

the proportion 4 years old or younger, the proportion of

males, and all the MVC covariates, that is, the violent crime

rate, material deprivation score, and residential density.

When added to the models with CT covariates new

immigrants, poverty, and official languages, the MVC

predictors substantially decreased the DIC, demonstrating

the predictive power of the MVC variables (multivariable

pooled regression model 588 464 versus 557 421; hierarchi-

cal model 580 634 versus 528 563). We were only able to

adjust for one priority group (proportion ≤ 4 years old) in

the hierarchical model, because more complex hierarchical

models did not converge. The adjusted relative risks (ARR)

that are presented compare the vaccination rate calculated at

the upper quartile to the vaccination rate calculated at the

lower quartile of the CT/MVC variables. Quartiles of the CT/

MVC variable distributions are shown in Tables 1 and 2. The

positive regression coefficients for driving time (4�13, 95%
credible interval [CI]: 4�12, 4�14) and capacity (1�098, 95%
CI: 1�092, 1�104) suggest that, all else being equal, individuals
tended to use MVC that were closer to home and MVC that

had a greater vaccination capacity (Table 3). After adjusting

for other measured and unmeasured CT-level variables,

Charland et al.

320 ª 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.



MVC variables, and relative accessibility, CTs with higher

proportions of residents living below the poverty level and

CTs with a greater proportion of new immigrants tended to

have lower vaccine uptake (ARR: 0�918, 95% CI: 0�893,
0�946; ARR: 0�936, 95% CI: 0�913, 0�959, respectively). CTs
with a greater proportion speaking an official language

tended to have higher vaccination rates (ARR: 1�034, 95% CI:

1�012, 1�059). For the MVC variables, all else being equal,

fewer vaccinations took place at clinics located in areas with

high residential density and high violent crime rates (ARR:

0�663, 95% CI: 0�660, 0�666; ARR: 0�917, 95% CI: 0�915,
0�918, respectively). There was also reduced flow to clinics

placed in areas with high material deprivation (ARR: 0�649,
95% CI: 0�645, 0�654).

Replacing a clinic located in an area with high material

deprivation, residential density, and violent crime rate by a

clinic located in an area with less material deprivation, a

lower residential density and a lower violent crime rate

resulted in a greater predicted clinic performance (54 938

predicted vaccinations in the new clinic, compared to

20 730). The material deprivation score, residential density,

and violent crime rates for the new compared to the original

area were 51�0 versus 80�1, 1211 versus 3754 per 10 000 DU/

km2, and 61�1 versus 205�8 per 10 000, respectively.

After omitting the three MVC that were open for

<2 weeks, there was little change in the regression coefficients

(Table A2). Similarly, comparing the results from the model

with alternative priors, there was little change in the

regression coefficients (Table A3). According to the DIC,

models with time to travel by car fit the data better than the

same model with time to travel by public transit (Table A1).

There were differences between the two models, the most

notable being the association with travel time (exponent for

drive time: 4�13, 95% CI: 4�12, 4�14; exponent for time by

public transit 0�0242, 95% CI: 0�0191, 0�0296) (Table A4).

Discussion

Our study findings suggest that clinic accessibility, commu-

nity-level factors, and clinic-level factors were predictors of

vaccine uptake. Individuals tended to get vaccinated at clinics

that were closer to home and had a greater capacity.

Community of residence characteristics were associated with

vaccine uptake. All else being equal, community populations

that had a high proportion of new immigrants and a high

proportion of individuals living below the poverty line

tended to have lower vaccine uptake; compared to the lower

quartile of the distribution of proportion of new immigrants

and proportion living below the poverty line, those at the

upper quartile had average decreases in vaccination rates of

6% and 8%, respectively. Speaking an official language, that

is, either English or French, was associated with a 3% higher

Figure 1. Geographic position of MVC, MVC performance, and CT vaccination coverage.

Pandemic influenza vaccine coverage
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vaccine uptake. Adding clinic-level factors to the models with

clinic accessibility and community-level covariates greatly

improved the models’ predictive power. After accounting for

clinic accessibility and community-level variables, there were

decreased vaccination rates associated with clinics in areas

with higher residential density, higher violent crime rates,

and higher material deprivation. Compared to clinics located

in areas with residential density, violent crime rate, and

material deprivation at the lower quartile, those at the upper

quartile had at least a 33%, 8% and 35% reduction in

vaccination rates. The gravity model that accounts for clinic

accessibility and both community- and clinic-level factors

could be used to identify alternative geographic positions of

the clinics that have higher predicted vaccine coverage.
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Influenza A/H1N1p vaccine coverage not only varied

considerably between countries but there is also evidence of

regional variation at a smaller scale.3,19–21 Previous studies

have related recent immigration, ethnicity, level of educa-

tion, occupation, income, age, gender, and material depri-

vation with vaccine uptake.3,5,6,20,22–33 Most studies found

increased uptake with higher education22,25,28,30,32 and risk

group status,3,20,25,26,28,29,30 but there was little consistency

in findings between studies with respect to age and

sex.3,20,23,26,27,29,30,31,33 For example, some studies found

that older populations more likely to be vaccinated,
23,26,27,29,31,33 while others found higher uptake among

children.20,22,30

All else being equal, lower vaccine uptake was more typical

of areas with a higher proportion of new immigrants and this

is consistent with the literature regarding healthcare utiliza-

tion/vaccine uptake among recent immigrants in Can-

ada.5,34,35 Interestingly, the association persisted even after

adjusting for the percentage of the CT population speaking

an official language, which underlines the complexity of the

relationship between ethnicity/immigrant status and health-

care utilization. Deri 36 found that the spread of information

regarding healthcare issues, such as the opening of vaccina-

tion clinics, can be facilitated in communities with a high

concentration of an ethnic group, but if ethnic norms do not

support healthcare utilization/vaccination, this will not

necessarily result in greater healthcare utilization/vaccination

uptake. On the other hand, there tends to be greater

healthcare utilization in ethnic communities when there are a

greater number of physicians from that ethnicity practicing

medicine in the community.36 Thus, in promoting vaccina-

tion in communities, sensitivity to the population’s ethnic

composition and spoken languages, for example by involving

ethnic healthcare personnel, may encourage vaccination

uptake.

Time to drive from home to the clinic was an important

factor in deciding where to be vaccinated. The median

driving time for all CT/MVC pairs was 20 minutes and the

longest trip was about 50 minutes, but approximately 90% of

the trips took under 15 minutes. The models with accessi-

bility based on time to travel by public transit did not fit the

data as well as time to travel by car. However, our measures

of travel time by public transit did not include time to walk

to and from transit access points. Nevertheless, MVC in areas

with high residential density did not perform well in general,

including two of the MVC that were placed in very close

proximity to subway stations. These suggest that drive time

and access to parking at the MVC should be considered when

planning MVC placement.

The impact of geographic accessibility to healthcare

services has been examined in previous studies although

different aspects of accessibility were studied. Fu et al.37

reported that young children in Washington, DC, with

greater spatial accessibility were more likely to be up-to-date

with respect to vaccinations. Spatial accessibility in their

study was a measure of population-to-provider ratio for each

residence of the study region. Baumgardner et al.38

conducted a chart review of 2- to 5-year-old patients from

two clinics in Milwaukee, Wisconsin, to determine whether

distance from home to clinic was related to the level of

completion of vaccinations. They did not find evidence of an

association between distance and level of completion of

vaccinations.

Strengths of this study include the quality of the data,

which were compiled from a vaccine registry rather than data

derived from surveys. The analysis was based on a fine

geographic partition, into CTs, which provides reassurance

of within-community homogeneity in exposures. Even so,

the study was limited by the aggregated nature of our data.

Causal relationships at the individual level cannot necessarily

be inferred from these findings. However, public health

interventions are generally directed at communities [e.g.,

telephone or text messaging reminders to community

residents with low vaccine uptake39], thus supporting the

study of these relationships at the level of community and

clinic rather than the individual. Nevertheless, we can only

make inferences about the factors that promoted vaccination,

with caution.

Table 3. Regression coefficients and relative risks from the analysis of

flows from Montreal CTs to MVC during the 2009 influenza pandemic

mass vaccination campaign

Variable

Regression

coefficient*, ** 95% Credible interval

Capacity (exponent) 1�098 1�092, 1�104
Drive time (exponent) 4�13 4�12, 4�14

CT variable Relative risk*,** 95% Credible interval

New immigrant 0�936 0�913, 0�959
Poverty 0�918 0�893, 0�946
Official languages 1�034 1�012, 1�059

MVC variable Relative risk*,** 95% Credible interval

Material deprivation 0�649 0�645, 0�654
Violent crime rate 0�917 0�915, 0�918
Residential density 0�663 0�660, 0�666

*Hierarchical model adjusting for driving time, clinic capacity,

proportion age ≤4 years, proportion of males and unmeasured CT

variables (CT random effects).

**Relative risks compare vaccination rates at the upper to vaccination

rates at the lower quartile of the CT/MVC variable (Tables 1–2).
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The findings from this study suggest that poverty, new

immigrant status, and not speaking an official language were

associated with decreased vaccine uptake. For equally acces-

sible clinics, those located in regions with high residential

density, material deprivation, and violent crime rates did not

perform as well. Distance was also an important factor as

most trips took under 15 minutes by car. The gravity models

we developed could in similar circumstances be used to help

identify MVC placements that would result in greater vaccine

coverage. In addition, preparations for future mass vaccina-

tion campaigns should also consider different ways in which

important information can be more effectively transmitted to

new immigrants, populations that do not speak English or

French, and those living in poverty.40 Possible ways to reach

these vulnerable populations include advertising in freely

accessible local newspapers, advertising in ethnic newspapers,

and during ethnic television programs, advertising in local

community centers and holding information sessions using

personnel from the appropriate ethnic group.
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Appendix 1

Gravity models are used to analyze the flow of people,

commodities, information, etc., from an origin to a desti-

nation. The origin and destination are characterized by their

mass (e.g., population size) and other attributes (e.g., urban

versus rural). Distance between origin and destination also

contributes to the “gravitational pull” or flow between origin

and destination. In general, decreased masses and increased

distances are associated with diminished flow. Gravity

models are used to examine the role of supply, demand,

distance, and origin/destination characteristics on flow from

origin to destination.

Flow from origin i to destination j, Yij is assumed to follow

a Poisson distribution with mean lij and

lij ¼ kDid
�c
ij Cd

j

where k is a constant,d�c
ij is a distance decay factor, Di

represents the demand at origin i, and Cj signifies the supply

at destination j. Accessibility of destination j from origin i

can be expressed as Aij ¼ d�c
ij Cd

j giving an alternative

Table A1. Deviance information criterion

Model Covariates DIC

Multivariable

regression*

None 590 361

Official languages 590 195

Post-secondary education 590 193

MVC violent crime rate 589 869

CT material deprivation index 589 796

New immigrants 589 389

Unemployment 589 065

Poverty 588 637

New immigrants + poverty 588 499

New immigrants + poverty +
official languages

588 464

Ratio of MVC to CT of residence

material deprivation

587 898

MVC material deprivation

index

580 674

MVC residential density 571 158

New immigrants + poverty +
official languages +
MVC material deprivation +
MVC residential density +
MVC violent crime rate

557 421

Hierarchical** None 580 639

New immigrants + poverty +
official languages

580 634

New immigrants + poverty +
official languages +
MVC material deprivation +
MVC residential density +
MVC violent crime rate

528 563

Hierarchical ***

(public transit)

New immigrants + poverty +
official languages +
MVC material deprivation +
MVC residential density +
MVC violent crime rate

2 733 460

*Pooled regression adjusting for driving time, clinic capacity, propor-

tion of the population belonging to each priority group, and

proportion of males.

**Adjusting for driving time, clinic capacity, proportion age ≤4 years,

proportion of males and unmeasured CT variables (CT random

effects).

***Adjusting for time by public transit, clinic capacity, proportion age

≤4 years, proportion of males and unmeasured CT variables (CT

random effects).
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Table A2. Regression coefficients and relative risks from the analysis excluding three MVC, open for short durations

Variable

16 MVC 19 MVC

Regression coefficient* 95% Credible interval Regression coefficient* 95% Credible interval

Capacity (exponent) 1�426 1�415,1�438 1�098 1�092, 1�104
Drive time (exponent) 4�362 4�355, 4�371 4�13 4�12, 4�14

CT variable Relative risk*,** 95% Credible interval Relative risk*,** 95% Credible interval

New immigrant 0�936 0�910, 0�964 0�936 0�913, 0�959
Poverty 0�912 0�883, 0�946 0�918 0�893, 0�946
Official languages 1�050 1�021, 1�081 1�034 1�012, 1�059

MVC variable Relative risk*,** 95% Credible interval Relative risk*,** 95% Credible interval

Material deprivation 0�639 0�634, 0�643 0�649 0�645, 0�654
Violent crime rate 0�907 0�906, 0�908 0�917 0�915, 0�918
Residential density 0�606 0�603, 0�609 0�663 0�660, 0�666

*Hierarchical model adjusting for driving time, clinic capacity, proportion age ≤4 years, proportion of males and unmeasured CT variables (CT random

effects).

**Relative risks compare vaccination rates at the upper to vaccination rates at the lower quartile of the CT/MVC variable (Tables 1–2).

Table A3. Regression coefficient and relative risks (hierarchical model) from the sensitivity analysis of prior distributions

Variable

Main priors* Alternative priors**

Regression coefficient*** 95% Credible interval Regression coefficient*** 95% Credible interval

Capacity (exponent) 1�098 1�09, 1�10 1�098 1�09, 1�11
Travel time (exponent) 4�13 4�12, 4�14 4�13 4�12, 4�14

CT variable Relative risk***, † 95% Credible interval Relative risk***, † 95% Credible interval

New immigrant 0�936 0�913, 0�959 0�938 0�915, 0�961
Poverty 0�918 0�893, 0�946 0�917 0�891, 0�943
Official languages 1�034 1�012, 1�059 1�035 1�012, 1�058

MVC variable Relative risk***, † 95% Credible interval Relative risk***, † 95% Credible interval

Material deprivation 0�649 0�645, 0�654 0�649 0�645, 0�654
Violent crime rate 0�917 0�915, 0�918 0�917 0�915, 0�918
Residential density 0�663 0�660, 0�666 0�663 0�660, 0�666

*Main priors: intercept: non-informative; regression coefficients N(0, 1000); inverse variances gamma(0�1, 0�0001).
**Alternative priors: intercept: non-informative; regression coefficients N(0, 10); inverse variances gamma(0�01, 0�0001).
***Hierarchical model adjusting for driving time, clinic capacity, proportion age ≤4 years, proportion of males and unmeasured CT variables (CT

random effects).

†Relative risks compare vaccination rates at the upper to vaccination rates at the lower quartile of the CT/MVC variable (Tables 1–2).
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expression for mean flow from origin i to destination j, based

on accessibility,

lij ¼ kDiAij

Because the preference for one destination depends on the

accessibility from the origin to all other destinations, Congdon

(2001) introduced relative accessibility, Rij ¼ AijP
m

Aim
, and the

mean flow is re-expressed as

lij ¼ kDiRij

Taking the logarithm of both sides and adding origin-

and destination-specific covariates give the log-linear

model:

logðlijÞ ¼ b0 þ logðDiÞ þ logðRijÞ þ boriginXi þ bdestinationZj

where Xi and Zi are the vectors of covariate values for

origin i and destination j, respectively, and borigin and

bdestination are the regression coefficients for the origin and

destination covariates, respectively. In the Bayesian approach

presented by Congdon,7 minimally informative normal prior

distributions are assigned to the regression coefficients.

Taking population size as the demand, the Bayesian gravity

model formulation is:

Yij � PoissonðlijÞ

logðlijÞ ¼ b0 þ logðpopulationiÞ þ logðRijÞ þ bCTXi

þ bMVCZj

Rij ¼ AijP
m
Aim

; Aij ¼
Cd
j

dcij

Alternatively, rather than including log (populationi) and

log (Rij) as offsets, they may be entered in the model as

covariates. To account for unmeasured risk factors that vary

with and without spatial structure, spatially correlated

random effects and exchangeable random effects, respec-

tively, can be added to the model.10 We can assume that the

exchangeable random effects follow a normal distribution

with zero mean. Spatially correlated random effects can

follow a CAR prior, which assumes that neighboring areas

have similar event rates. The model with exchangeable and

spatially correlated random effects is:

logðlijÞ ¼ b0 þ logðPopulationiÞ þ logðRijÞ þ bCTXi

þ bMVCZj þ ui þ vi;

vi � normalð0; r2vÞ

Table A4. Regression coefficient and relative risks (hierarchical model) from the sensitivity analysis of prior distributions

Variable

Main priors* Alternative priors**

Regression coefficient*** 95% Credible interval Regression coefficient*** 95% Credible interval

Capacity (exponent) 1�098 1�09, 1�10 1�098 1�09, 1�11
Travel time (exponent) 4�13 4�12, 4�14 4�13 4�12, 4�14

CT variable Relative risk***, † 95% Credible interval Relative risk***, † 95% Credible interval

New immigrant 0�936 0�913, 0�959 0�938 0�915, 0�961
Poverty 0�918 0�893, 0�946 0�917 0�891, 0�943
Official languages 1�034 1�012, 1�059 1�035 1�012, 1�058

MVC variable Relative risk***, † 95% Credible Interval Relative risk***, † 95% Credible interval

Material deprivation 0�649 0�645, 0�654 0�649 0�645, 0�654
Violent crime rate 0�917 0�915, 0�918 0�917 0�915, 0�918
Residential density 0�663 0�660, 0�666 0�663 0�660, 0�666

*Main priors: intercept: non-informative; regression coefficients N(0, 1000); inverse variances gamma(0�1, 0�0001).
**Alternative priors: intercept: non-informative; regression coefficients N(0, 10); inverse variances gamma(0�01, 0�0001).
***Hierarchical model adjusting for driving time, clinic capacity, proportion age ≤4 years, proportion of males and unmeasured CT variables (CT

random effects).

†Relative risk compare vaccination rates at the upper to vaccination rates at the lower quartile of the CT/MVC variable (Tables 1–2).
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uijuleoi � normal

P
leoi

ui

ni
;
r2
u

ni

0
B@

1
CA

di is the set of neighbors of area i, for example areas

sharing a border with area i, and ni is the number of

neighbors. Typically, the inverses of the variances r2v and r2u
are assigned gamma priors.
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