81 research outputs found
First principles calculation and experimental investigation of lattice dynamics in the rare earth pyrochlores R2Ti2O7 (R=Tb, Dy, Ho)
We present a model of the lattice dynamics of the rare earth titanate pyrochlores R2Ti2O7 (R=Tb, Dy, Ho), which are important materials in the study of frustrated magnetism. The phonon modes are obtained by density functional calculations, and these predictions are verified by comparison with scattering experiments. Single crystal inelastic neutron scattering is used to measure acoustic phonons along high symmetry directions for R=Tb, Ho; single crystal inelastic x-ray scattering is used to measure numerous optical modes throughout the Brillouin zone for R=Ho; and powder inelastic neutron scattering is used to estimate the phonon density of states for R=Tb, Dy, Ho. Good agreement between the calculations and all measurements is obtained, meaning that the energies and symmetries of the phonons in these materials can be regarded as understood. The knowledge of the phonon spectrum is important for understanding spin-lattice interactions, and can be expected to be transferred readily to other members of the series to guide the search for unconventional magnetic excitations
Pauling Entropy, Metastability, and Equilibrium in Dy_{2}Ti_{2}O_{7} Spin Ice
Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35 K/10^{6} s and 0.5 K/10^{5} s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions
Pauling Entropy, Metastability, and Equilibrium in Dy_{2}Ti_{2}O_{7} Spin Ice
Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35 K/10^{6} s and 0.5 K/10^{5} s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions
IgCaller for reconstructing immunoglobulin gene rearrangements and oncogenic translocations from whole-genome sequencing in lymphoid neoplasms
Immunoglobulin (Ig) gene rearrangements and oncogenic translocations are routinely assessed during the characterization of B cell neoplasms and stratification of patients with distinct clinical and biological features, with the assessment done using Sanger sequencing, targeted next-generation sequencing, or fluorescence in situ hybridization (FISH). Currently, a complete Ig characterization cannot be extracted from whole-genome sequencing (WGS) data due to the inherent complexity of the Ig loci. Here, we introduce IgCaller, an algorithm designed to fully characterize Ig gene rearrangements and oncogenic translocations from short-read WGS data. Using a cohort of 404 patients comprising different subtypes of B cell neoplasms, we demonstrate that IgCaller identifies both heavy and light chain rearrangements to provide additional information on their functionality, somatic mutational status, class switch recombination, and oncogenic Ig translocations. Our data thus support IgCaller to be a reliable alternative to Sanger sequencing and FISH for studying the genetic properties of the Ig loci.We are indebted to the Genomics Core Facility of the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) for the technical support, to R. Siebert and D. Huebschmann for sharing the CSR regions, and to K. Stamatopoulos, E. Vlachonikola and F. Psomopoulos for their helpful comments on the manuscript. We thank R. Eils, P. Lichter, C. von Kalle, S. Fröhling, H. Glimm, M. Zapatka, S. Wolf, K. Beck, and J. Kirchhof for infrastructure and pipeline development within DKFZ-HIPO and NCT POP. This study was supported by the Instituto de Salud Carlos III and the European Regional Development Fund “Una manera de hacer Europa” (PMP15/00007 to E.C.), the “la Caixa” Foundation (CLLEvolution-LCF/PR/HR17/52150017, Health Research 2017 Program HR17-00221 to E.C.), the National Institute of Health “Molecular Diagnosis, Prognosis, and Therapeutic Targets in Mantle Cell Lymphoma” (P01CA229100 to E.C.), and CERCA Programme/Generalitat de Catalunya. F.N. is supported by a pre-doctoral fellowship of the Ministerio de Economía y Competitividad (BES-2016-076372). F.M. is supported by the Memorial Sloan Kettering Cancer Center NCI Core Grant (P30 CA 008748). E.C. is an Academia Researcher of the “Institució Catalana de Recerca i Estudis Avançats” (ICREA) of the Generalitat de Catalunya. This work was partially developed at the Centre Esther Koplowitz (CEK, Barcelona, Spain).Peer ReviewedPostprint (published version
Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production
BACKGROUND: The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = -0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01). CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis
Creation of a type IIS restriction endonuclease with a long recognition sequence
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases
Defining signatures of peripheral T-cell lymphoma with a targeted 20-marker gene expression profiling assay.
Peripheral T-cell lymphoma comprises a heterogeneous group of mature non-Hodgkin lymphomas. Their diagnosis is challenging, with up to 30% of cases remaining unclassifiable and referred to as "not otherwise specified". We developed a reverse transcriptase-multiplex ligation-dependent probe amplification gene expression profiling assay to differentiate the main T-cell lymphoma entities and to study the heterogeneity of the "not specified" category. The test evaluates the expression of 20 genes, including 17 markers relevant to T-cell immunology and lymphoma biopathology, one Epstein-Barr virus-related transcript, and variants of RHOA (G17V) and IDH2 (R172K/T). By unsupervised hierarchical clustering, our assay accurately identified 21 of 21 ALK-positive anaplastic large cell lymphomas, 16 of 16 extranodal natural killer (NK)/T-cell lymphomas, 6 of 6 hepatosplenic T-cell lymphomas, and 13 of 13 adult T-cell leukemia/lymphomas. ALK-negative anaplastic lymphomas (n=34) segregated into one cytotoxic cluster (n=10) and one non-cytotoxic cluster expressing Th2 markers (n=24) and enriched in DUSP22-rearranged cases. The 63 T <sub>FH</sub> -derived lymphomas divided into two subgroups according to a predominant T <sub>FH</sub> (n=50) or an enrichment in Th2 (n=13) signatures. We next developed a support vector machine predictor which attributed a molecular class to 27 of 77 not specified T-cell lymphomas: 17 T <sub>FH</sub> , five cytotoxic ALK-negative anaplastic and five NK/T-cell lymphomas. Among the remaining cases, we identified two cell-of-origin subgroups corresponding to cytotoxic/Th1 (n=19) and Th2 (n=24) signatures. A reproducibility test on 40 cases yielded a 90% concordance between three independent laboratories. This study demonstrates the applicability of a simple gene expression assay for the classification of peripheral T-cell lymphomas. Its applicability to routinely-fixed samples makes it an attractive adjunct in diagnostic practice
- …