1,995 research outputs found

    Supersymmetry and a Time-Dependent Landau System

    Get PDF
    A general technique is outlined for investigating supersymmetry properties of a charged spin-\half quantum particle in time-varying electromagnetic fields. The case of a time-varying uniform magnetic induction is examined and shown to provide a physical realization of a supersymmetric quantum-mechanical system. Group-theoretic methods are used to factorize the relevant Schr\"odinger equations and obtain eigensolutions. The supercoherent states for this system are constructed.Comment: 47 pages, submitted to Phys. Rev. A, LaTeX, IUHET 243 and LA-UR-93-20

    Evolution of squeezed states under the Fock-Darwin Hamiltonian

    Full text link
    We develop a complete analytical description of the time evolution of squeezed states of a charged particle under the Fock-Darwin Hamiltonian and a time-dependent electric field. This result generalises a relation obtained by Infeld and Pleba\'nski for states of the one-dimensional harmonic oscillator. We relate the evolution of a state-vector subjected to squeezing to that of state which is not subjected to squeezing and for which the time-evolution under the simple harmonic oscillator dynamics is known (e.g. an eigenstate of the Hamiltonian). A corresponding relation is also established for the Wigner functions of the states, in view of their utility in the analysis of cold-ion experiments. In an appendix, we compute the response functions of the FD Hamiltonian to an external electric field, using the same techniques as in the main text

    Simultaneous Comparison of Many Triphasic Defibrillation Waveforms

    Get PDF
    Biphasic defibrillation waveforms are now accepted as being more effective at terminating ventricular fibrillation (VF) than monophasic waveforms. If two phases are better than one, this naturally leads to the hypothesis that additional phases improve efficacy. This study tests the hypothesis by adding one additional phase. We examined the efficacy of 18 different triphasic waveforms simultaneously

    Equivariant differential characters and symplectic reduction

    Full text link
    We describe equivariant differential characters (classifying equivariant circle bundles with connections), their prequantization, and reduction

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table

    Observation of a red-blue detuning asymmetry in matter-wave superradiance

    Full text link
    We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned light, the familiar distinctive multi-order, matter-wave scattering pattern is clearly visible, whereas with blue-detuned light superradiance is strongly suppressed. In the limit of a dilute atomic gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let

    Coherent states and related quantizations for unbounded motions

    Full text link
    We build coherent states (CS) for unbounded motions along two different procedures. In the first one we adapt the Malkin-Manko construction for quadratic Hamiltonians to the motion of a particle in a linear potential. A generalization to arbitrary potentials is discussed. The second one extends to continuous spectrum previous constructions of action-angle coherent states in view of a consistent energy quantization

    Coherent states of non-relativistic electron in magnetic-solenoid field

    Full text link
    We construct coherent states of a nonrelativistic electron in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kind of coherent states, the first kind corresponds to classical trajectories which embrace the solenoid and the second one to trajectories which do not. Mean coordinates in the constructed coherent states are moving along classical trajectories, the coherent states maintain their form under the time evolution, and represent a complete set of functions, which can be useful in semi classical calculations. In the absence of the Aharonov-Bohm filed these states are reduced to the well-known in the case of uniform magnetic field Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures adde

    Nonequilibrium orientational patterns in two-component Langmuir monolayers

    Get PDF
    A model of a phase-separating two-component Langmuir monolayer in the presence of a photo-induced reaction interconvering two components is formulated. An interplay between phase separation, orientational ordering and treaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources and vortex defects.Comment: Submitted to the Physical Review
    corecore