59 research outputs found

    The Stony Brook / SMARTS Atlas of mostly Southern Novae

    Full text link
    We introduce the Stony Brook / SMARTS Atlas of (mostly) Southern Novae. This atlas contains both spectra and photometry obtained since 2003. The data archived in this atlas will facilitate systematic studies of the nova phenomenon and correlative studies with other comprehensive data sets. It will also enable detailed investigations of individual objects. In making the data public we hope to engender more interest on the part of the community in the physics of novae. The atlas is on-line at \url{http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/} .Comment: 11 figures; 5 table

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2RÎłnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γΎ T cells, and is characterized by production of interferon (IFN)-Îł, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) VÎČ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses

    Effects of early feeding on growth velocity and overweight/obesity in a cohort of HIV unexposed South African infants and children

    Get PDF
    BACKGROUND: South Africa has the highest prevalence of overweight/obesity in Sub-Saharan Africa. Assessing the effect of modifiable factors such as early infant feeding on growth velocity and overweight/obesity is therefore important. This paper aimed to assess the effect of infant feeding in the transitional period (12 weeks) on 12–24 week growth velocity amongst HIV unexposed children using WHO growth velocity standards and on the age and sex adjusted body mass index (BMI) Z-score distribution at 2 years. METHODS: Data were from 3 sites in South Africa participating in the PROMISE-EBF trial. We calculated growth velocity Z-scores using the WHO growth standards and assessed feeding practices using 24-hour and 7-day recall data. We used quantile regression to study the associations between 12 week infant feeding and 12–24 week weight velocity (WVZ) with BMI-for-age Z-score at 2 years. We included the internal sample quantiles (70th and 90th centiles) that approximated the reference cut-offs of +2 (corresponding to overweight) and +3 (corresponding to obesity) of the 2 year BMI-for-age Z-scores. RESULTS: At the 2-year visit, 641 children were analysed (median age 22 months, IQR: 17–26 months). Thirty percent were overweight while 8.7% were obese. Children not breastfed at 12 weeks had higher 12–24 week mean WVZ and were more overweight and obese at 2 years. In the quantile regression, children not breastfed at 12 weeks had a 0.37 (95% CI 0.07, 0.66) increment in BMI-for-age Z-score at the 50th sample quantile compared to breast-fed children. This difference in BMI-for-age Z-score increased to 0.46 (95% CI 0.18, 0.74) at the 70th quantile and 0.68 (95% CI 0.41, 0.94) at the 90th quantile . The 12–24 week WVZ had a uniform independent effect across the same quantiles. CONCLUSIONS: This study demonstrates that the first 6 months of life is a critical period in the development of childhood overweight and obesity. Interventions targeted at modifiable factors such as early infant feeding practices may reduce the risks of rapid weight gain and subsequent childhood overweight/obesity.Scopu

    ADAM17 Deletion in Thymic Epithelial Cells Alters Aire Expression without Affecting T Cell Developmental Progression

    Get PDF
    Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs) are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach.We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αÎČ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted.In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development remain to be identified

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    The magnetic fields of ÎČ Coronae Borealis and the early F-star σ Bootis

    Get PDF
    International audienceThe study of magnetism in stars close to the transition from fossil to dynamo magnetic fields is important for understanding the nature of the stellar dynamo and dynamics of the outer atmosphere. We present surface magnetic maps for two stars that are located on opposite sides of the suspected transition zone: the chemically peculiar late A-star ÎČ Coronae Borealis (A9SrEuCr) and the early F-star σ Bootis (F3V). The large-scale magnetic field reconstructed at six epochs for ÎČ Coronae Borealis shows a complex fossil magnetic field, which is highly poloidal, and contains almost half the magnetic energy in higher multipoles (ℓ > 1). In contrast, the single epoch magnetic map for σ Bootis contains a simple surface magnetic topology that is mostly poloidal, and predominantly dipolar, and is consistent with observations of other mature late F-stars
    • 

    corecore