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In the thymus, diverse populations of thymic epithelial cells (TECs), including 

cortical and medullary TECs and their subpopulations, have distinct roles in 

coordinating the development and repertoire selection of functionally competent 

and self-tolerant T cells. Here, we review the expanding diversity in TEC 

subpopulations, in relation to their functions in T cell development and selection 

as well as their origins and development. 

 

Some are dead and some are living, 

In my life, I’ve loved them all. 

- In My Life, The Beatles 

 

The generation of diversity is a key feature of the immune system, and such 

importance was highlighted in the 1968 illustration by Richard Gershon, who 

described it as a conductor of the “immunological orchestra”1,2. Initially, generation 
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of diversity referred to the diversity in antigen recognition specificities by antibodies 

and T cell receptors (TCRs). Subsequently, it soon expanded to include the diversity 

in B and T cell subsets and their functional heterogeneity, and further the diversity in 

macrophages, dendritic cells (DCs), innate lymphoid cells and other haematopoietic 

cells. Now, this diversity incudes non-haematopoietic cells of the immune system, 

both in the primary and secondary lymphoid organs. The more we learn about these 

non-haematopoietic cells within immune organs, the more we realize that they are not 

just bystander neighbours or resting stroma. They are non-haematopoietic but are 

diverse and dynamic cells with important roles in the immune system, organizing the 

development and function of haematopoietic immune cells. Thymic epithelial cells 

(TECs) are among those diverse and dynamic non-haematopoietic cells.  

The organization of adult thymic tissue into cortical and medullary areas, and 

the presence of an epithelial cell component within each area has for many years 

provided a way to describe and examine TEC heterogeneity. For example, epithelial 

cells in the cortex and medulla have differing morphological features, and this is due 

at least in part to the density of neighbouring thymocytes that they are surrounded by 

and interacting with3. Indeed, it is these differing interactions between cortical TECs 

(cTECs) and medullary TECs (mTECs) and thymocytes of differing developmental 

stages that lends support to the idea that the primary reason for TEC diversity is the 

requirement for their stepwise provision of signals essential for thymocyte 

development4,5 (Fig. 1 and Box 1). While the existence of cTEC and mTEC 

compartments has long been known, recent advances in understanding the nature of 

the signals they provide, and the ways in which they influence thymocyte 

development and selection, have provided opportunities to dissect TEC populations 

further. For example, both cTECs and mTECs can now be defined by their distinct 
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expression patterns of chemokines, cytokines, costimulatory molecules, antigen 

processing machinery and transcription factors, observations that have significantly 

expanded our knowledge of TEC diversity. Moreover, comparable analysis of the 

expression of at least some of these functional attributes during thymus ontogeny6-8 

has provided important information regarding the developmental programmes that 

result in the generation of distinct cTEC and mTEC lineages. 

 

Heterogeneity in cTECs 

Developmental heterogeneity in cTECs. cTECs are heterogeneous in surface 

expression of various molecules, many of which are developmentally regulated as 

previously summarized in REFS 9,10. Most cTECs in the postnatal thymus, which are 

defined by expression of epithelial cell adhesion molecule (EPCAM) and CD205, 

express high levels of MHC class II molecules and CD40. By contrast, the expression 

levels of MHC class II and CD40 are lower during embryogenesis, and increase 

during the ontogeny6. The expression level of atypical chemokine receptor 4 

(ACKR4; also known as CCRL1), which is a non-signalling decoy receptor for 

chemokines CC-chemokine ligand 19 (CCL19), CCL21 and CCL25, in CD205+ 

cTECs, is also elevated during embryogenesis, but stays broadly heterogeneous in the 

postnatal thymus11 (Fig. 2a). 

The development of neighbouring and co-developing thymocytes affects the 

developmental increase in MHC class II, CD40 and ACKR4 expression by cTECs12-

14. The expression of MHC class II and CD40 by postnatal cTECs remains low in a 

human CD3ε transgenic mouse strain (tgε26), in which T cell development is arrested 

at the early double negative 1 stage (which is defined as CD44+CD25–CD4–CD8–)6, 
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whereas the appearance of ACKR4hi cTECs is diminished in mice deficient in both 

recombination-activating gene 2 (RAG2) and interleukin-2 receptor γ-subunit (IL-

2Rγ), in which thymocyte development is also blocked at an early stage11.  

 

Functional heterogeneity in cTECs. The thymic cortex provides the 

microenvironment that supports de novo generation of TCR-expressing CD4+CD8+ 

thymocytes (referred to as double-positive (DP) thymocytes) and positive selection of 

newly generated DP thymocytes. cTECs express various molecules that are 

responsible for these processes, as previously summarized in REFS 3,15,16. Namely, 

cTECs express the chemokines CCL25 and CXC-chemokine ligand 12 (CXCL12) 

and NOTCH ligand Delta-like protein 4 (DLL4), which promote thymus seeding and 

T-cell-lineage specification of lymphoid progenitors. The cytokines interleukin-7 (IL-

7) and stem cell factor (SCF) produced by cTECs support the proliferation of 

developing thymocytes. cTECs also express the thymoproteasome component β5t7 

(also known as PSMB11) and endosomal-lysosomal proteases cathepsin L (CTSL) 

and thymus-specific serine protease (TSSP; also known as PRSS16), which contribute 

to the generation of MHC-associated self-peptides that induce positive selection17,18. 

Recently, and relevant to their role in positive selection, cTECs also express CD83, 

which influences CD4+ SP thymocyte development by regulating their surface 

expression turnover of MHC class II molecules19,20. In addition, cTECs express 

DLL4 and IL-721-24, with evidence indicating that levels of their expression by 

cTECs may be broad and highly heterogeneous (Fig. 2b). For example, DLL4 

expression by cTECs occurs at either low or high levels, which at least in part is 

regulated by signals from developing thymocytes21,22. Moreover, at least two 
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independently generated IL-7-reporter mouse lines23,24 identify cTEC heterogeneity 

with regard to IL-7 expression, and also show that the frequency of IL-7+ cTECs is 

age dependent. Thus, cTECs are functionally heterogeneous, although T-lineage-

specifying and positive-selection-inducing functions appear to overlap between 

individual cTECs [Au:OK?] . 

 

Thymic nurse cells. Thymic nurse cells, which internalize and envelop many 

thymocytes, are found in the thymic cortex, and constitute approximately 10% of β5t+ 

cTECs25-27. Thymocytes enclosed within thymic nurse cells are enriched with long-

lived DP thymocytes that undergo secondary TCR α-chain rearrangement, whereas 

thymic nurse cells are underdeveloped in many positive-selecting or negative-

selecting TCR-transgenic mice, in which transgenic TCRs are capable of inducing 

positive or negative selection efficiently This suggests that thymic nurse cells provide 

a microenvironment for optimal TCR repertoire selection by nurturing DP thymocytes 

to express the secondary rearranged TCR, thereby enabling a second chance of 

positive selection27. The physical and functional properties that underpin the ability 

of some cTECs to form thymic nurse cell complexes are not fully understood. 

However, thymic nurse cells have a unique gene expression signature, including high 

levels of CXCL12 and VCAM1 mRNAs27. Given that immature DP thymocytes 

express high levels of both CXCR4 and integrin α4β1 (also known as VLA4)28,29, 

which are receptors for CXCL12 and vascular cell adhesion protein 1 (VCAM1), 

respectively, it may be the case that thymic nurse cell formation is aided by both 

chemokine-mediated attraction and integrin-mediated adhesion of DP thymocytes to 

cTECs. Thus, thymic nurse cells are a subpopulation of cTECs, which are 
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morphologically and functionally specialized for optimizing positive selection of 

thymocytes (Fig. 2c).  

 

Heterogeneity in mTECs 

mTEChi and mTEClow populations. Postnatal mTECs contain two major 

subpopulations that are defined according to their levels of cell surface MHC class II 

and CD80 molecules; MHC class IIlowCD80low (mTEClow) cells and MHC class 

IIhiCD80hi (mTEChi) cells30. Embryonic mTEClow subpopulations contain the 

ability to give rise to mTEChi subpopulations in reaggregation thymus organ culture 

(RTOC; Table 1)31, leading to the widely appreciated notion that mTEClow 

subpopulations are immature precursors for functionally mature mTEChi 

subpopulations. However, it was known from early studies that postnatal mTEClow 

accumulate during ontogeny30. Indeed, it was later shown that cells of postnatal 

mTEClow populations have heterogeneous expression profiles, including the 

expression of involucrin and CCL2132,33. The involucrin-expressing mTEClow 

subset resembles terminally differentiated mTECs, possibly representing mTECs that 

constitute Hassall’s corpuscles that are detectable in human thymi32, whereas the 

CCL21-expressing mTEClow subset are essential for attracting positively selected 

thymocytes from the thymic cortex and thereby for the establishment of self-tolerance 

in T cells33. Thus, mTEClow populations are heterogeneous, containing not only 

immature precursors for mTEChi populations but also terminally differentiated 

mTECs and functionally relevant CCL21-expressing mTECs (Fig. 3). 

mTEChi are also heterogeneous with regard to their expression of autoimmune 

regulator (AIRE)34, the nuclear protein that critically regulates promiscuous gene 
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expression for the establishment of self-tolerance in medullary thymocytes35,36. 

AIRE+ mTEChi subsets are further subdivided into osteoprotegerin (OPG)+ and 

OPG– subpopulations37. OPG regulates the cellularity of mTECs and the size of the 

medullary region in the thymus, by attenuating proliferation of mTECs mediated by 

RANKL (also known as TNFSF11)38. Thus, both mTEClow and mTEChi 

populations are heterogeneous, and both mTEClow and mTEChi populations contain 

functionally relevant mature mTEC subpopulations (Fig. 3). 

 

Heterogeneity in promiscuous gene expression. Promiscuous gene expression is a 

characteristic that is unique to mTECs, in which 75-90% of all genes, including the 

tissue-restricted antigens, are expressed39,40. Promiscuous gene expression 

contributes to the establishment of T cell self-tolerance to entire components encoded 

in the genome41. AIRE deficiency causes a failure in optimal promiscuous gene 

expression and thereby in the establishment of self-tolerance in T cells, leading to the 

onset of autoimmune diseases in humans and mice35,42,43. AIRE binds to 

hypomethylated lysine residue 4 of histone 3, which is associated with the recruitment 

of RNA polymerase44,45. AIRE also interacts with many other proteins that 

contribute to the promotion of gene transcription, mRNA stabilization and protein 

translation46. Several layers of heterogeneity in mTECs should be discussed with 

regard to promiscuous gene expression, as follows. 

 

AIRE-dependency for promiscuous gene expression. AIRE dependency is 

heterogeneous among genes that are promiscuously expressed by mTECs. Many 

promiscuously expressed genes are highly dependent on AIRE and are detectable in 
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AIRE+ mTEChi subpopulations, whereas the expression of a considerable fraction of 

these genes is unaltered in AIRE-deficient mice and expressed in mTEClow and 

AIRE- mTEChi subpopulations47-49. A recent study reported that the transcription 

factor Fez family zinc finger protein 2 (FEZF2) contributes to selective promotion of 

the transcription of AIRE-independent promiscuous gene expression in mTECs and 

thereby the establishment of self-tolerance in T cells50. Interestingly, whereas AIRE 

expression by mTECs maps only to the mTEChi subset, FEZF2 expression was 

detectable in both mTEClow and mTEChi populations. In mTEChi populations, both 

AIRE-FEZF2+ and AIRE+FEZF2+ populations were evident, findings that reveal 

further heterogeneity within the mTEC compartment. Moreover, evidence was 

provided that mTEC expression of FEZF2 was controlled by lymphotoxin-β receptor 

(LTβR; also known as TNFRSF3) signalling50. This is important as it differs from 

the requirement for RANK-mediated and/or CD40-mediated signalling in AIRE+ 

mTEC development, and it also further highlights the importance of LTβR in mTEC 

development31,33,38,51,52. However, it remains unclear whether LTβR-mediated 

regulation of FEZF2 expression fully explains the failure of tolerance induction in 

LTβR-deficient mice, or whether additional LTβR-mediated effects contribute to 

thymic T cell tolerance mechanisms. 

 

Heterogeneity at the single-cell level. Single-cell gene expression analysis showed 

that individual promiscuously expressed genes are transcribed in 2-15% of mTECs53, 

and the expression of individual proteins encoded by these genes is detectable in 1-

3% of mTECs54. A single mTEC co-expresses multiple functionally unrelated 

promiscuously expressed genes55, and a single AIRE+ mTEC co-expresses both 
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AIRE-dependent and AIRE-independent genes53. Recent studies showed that AIRE-

dependent genes tend to be expressed at a lower frequency than AIRE-independent 

genes56,57 and that the number of promiscuously expressed gene transcripts in a 

single mTEC correlates with the expression level of AIRE39. In addition, the cluster 

analysis of single-cell transcriptome data showed that AIRE-dependent promiscuously 

expressed genes exhibit noticeable co-expression patterns56,57. Thus, promiscuous 

gene expression in individual mTECs is highly heterogeneous, and mosaic expression 

comprises a sizeable pool of the promiscuously expressed genes in total mTECs.  

 

Heterogeneity during developmental progression. Promiscuous gene expression is 

also heterogeneous through developmental progression. Promiscuous gene expression 

is detectable in embryonic mTECs even before the generation of TCRαβ-expressing 

thymocytes58,59, and co-expression pattern of promiscuously expressed genes in 

single mTECs increases in complexity during the ontogeny59. Use of a LacZ reporter 

to trace past and current expression of a particular gene revealed that the promiscuous 

expression of a particular gene is transient in single mTECs59. In vitro short-term 

cultures of human mTECs also showed that mTECs shift from one co-expression 

pattern to another55. The profile of promiscuously expressed self-antigens, including 

embryonic α-fetoprotein, is different between mTECs derived from embryonic and 

postnatal progenitors60. Thus, during development mTECs shift through 

heterogeneous patterns of promiscuous gene expression to eventually cover a diverse 

set of self-genomic components.  
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Post-AIRE promiscuous gene expression. AIRE-expressing mTEChi subsets are 

generally viewed as functionally mature mTECs in terms of their promiscuous gene 

expression but they contain the developmental potential to further give rise to AIRE- 

mTEClow subsets, including involucrin-expressing terminally differentiated 

mTECs32. The development of post-AIRE mTECs is predominantly promoted by 

lymphotoxin-α (LTα)–LTβR signals provided from positively selected thymocytes32, 

in contrast to the RANK–RANKL signals provided by positively selected thymocytes 

that promote the development of AIRE-expressing mTEChi subpopulation (ref. 

31,38). AIRE is also crucial for the development of post-AIRE mTECs61,62. Post-

AIRE mTECs highly express keratinocyte-related self-antigens, including desmoglin-

1 and desmoglin-3, whereas the expression of AIRE-dependent genes is reduced in 

post-AIRE mTECs63,64. Thus, profiles of promiscuous gene expression are different 

between post-AIRE mTECs and AIRE-expressing mTEChi subpopulations. 

 

Heterogeneity in chemokine expression. In addition to their provision of self-

antigens by promiscuous gene expression, mTECs also produce multiple chemokines 

that attract positively selected thymocytes and DCs, to optimize the establishment of 

self-tolerance in T cells3,15,16. Ligands for CCR7 produced by mTEC 

subpopulations guide positively selected thymocytes from the thymic cortex, whereas 

XCL1 produced by mTECs promotes the accumulation of thymic DCs in the 

medullary region. mTECs are heterogeneous in the expression of these chemokines. 

 CCL21, one of CCR7 ligand chemokines, contributes to the recruitment of positively 

selected thymocytes from the thymic cortex to the medullary region, so that T cells 

undergo medullary selection and establish self-tolerance65,66. The majority of 



11 

CCL21-expressing mTECs are distinct from AIRE-expressing mTECs, although both 

CCL21 and AIRE are detectable in a small subpopulation of mTECs33. CCL21-

expressing mTECs accumulate during postnatal ontogeny, unlike AIRE-expressing 

mTECs that dominate during the perinatal period33. Similar to post-AIRE mTECs, 

CCL21-expressing mTECs are enriched in the mTEClow subset, which is regulated 

by LTβR signals, and reduced in AIRE-deficient mice33. Thus, CCL21-expressing 

mTECs represent a functionally mature mTEC subpopulation, which resemble post-

AIRE mTECs. 

 Positive selection of thymocytes induces the upregulation of expression of multiple 

chemokine receptors, including CCR4. Unlike CCR7, CCR4 expression during 

thymic selection is transient, being predominantly expressed by CD69+ DP 

thymocytes and CD69+ SP thymocytes. Both CCL17 and CCL22, which are the two 

known ligands for CCR4, are expressed in the thymic medulla. Within mTECs, the 

highest levels of CCL17 and CCL22 are seen in mTEChi subsets compared with 

mTEClow subsets, although thymic DCs also express high levels of CCL17 and 

CCL22 mRNAs67,68. Whereas T cell development is grossly normal in CCR4-

deficient mice, as well as in mice lacking both CCR4 and CCR7, in vitro imaging of 

thymic slices suggested a role for CCR4 in cortex-to-medulla migration of 

thymocytes, and in supporting thymocyte–DC interactions. Interestingly, the numbers 

of thymic regulatory T (Treg) cells are slightly increased in the absence of 

CCR467,68, but as yet it is unclear whether this is linked to altered Treg cell selection 

or increased thymic recirculation of peripheral Treg cells, as seen in the absence of 

CCR769. 
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 The interplay between mTECs and thymic DCs coordinates the establishment of T 

cell self-tolerance in the thymic medulla70-72. Thymic DCs are predominantly 

localized in the medullary region, which is at least in part controlled by the interaction 

between the chemokine XCL1 produced by mTECs and its receptor XCR1 expressed 

by thymic DCs73. The expression of XCL1 mRNA is higher in mTEChi 

subpopulations than mTEClow populations and is highly AIRE-dependent73. XCL1-

deficient mice are defective in the optimal accumulation of thymic DCs in the 

medullary region and in the thymic generation of Treg cells, which depends on the 

thymus medulla73. Thus, XCL1 expression identifies another functionally relevant 

mTEC subpopulation. 

 

Origin and development of TEC subpopulations 

Although some studies suggested a dual germ layer origin of TECs74,75, cell 

transplantation experiments in both birds and mice definitively demonstrated that both 

cTECs and mTECs share a common endodermal origin76,77. Moreover, direct clonal 

analysis of embryonic TECs demonstrated that cTECs and mTECs share a common 

progenitor78. Given the essential requirement for both TEC subsets during T cell 

development, such findings are significant as they indicate that future cell-based TEC 

therapies aiming to restore or improve thymic function may focus on manipulating the 

differentiation of a single germ layer. Subsequently, extensive analysis of both 

embryonic and adult TEC development has been performed to understand the 

developmental pathways that lead to the formation of functional cortical and 

medullary microenvironments.  
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TEC specification and differentiation in the embryonic thymus. A thymic rudiment 

is evident in mouse gestation by embryonic day (E) 10-11. At this stage, it is a simple 

structure that is surrounded by neural crest-derived mesenchyme and contains a single 

endodermal epithelial layer that arises from the third pharyngeal pouch (3PP). As 

development proceeds, haematopoietic progenitors colonise the thymus, triggering the 

formation of increasingly complex three-dimensional epithelial networks79. Although 

the molecular regulators that impose thymus fate within the endodermal epithelium 

are still unclear, specification of the 3PP endoderm towards a TEC fate is influenced 

by both sonice hedgehog protein (SHH) and paired box protein PAX380. The 

presence of a thymus rudiment in forkhead box protein N1 (FOXN1)-deficient nude 

mouse [G] embryos demonstrates that specification of the 3PP endoderm towards 

thymic epithelium occurs independently of the transcription factor FOXN1. However, 

subsequent TEC differentiation, including the formation of three-dimensional TEC 

networks and the efficient recruitment and differentiation of T cell progenitors, is 

critically dependent on FOXN1 expression81-83. Indeed, this timing of expression of 

FOXN1 fits well with the roles of some of its target genes (for example, CCL25, 

CXCL12 and DLL4) that control the recruitment and early differentiation of T cell 

progenitors84,85. Significantly, the use of flow cytometry grade FOXN1-specific 

antibodies demonstrates that essentially all EPCAM+ TECs within the embryonic 

mouse thymus are FOXN1+ (ref. 86). Such observations are consistent with the 

findings that bipotent TEC progenitors residing in the embryonic thymus express 

FOXN182 and that the number of progenitors within the thymus anlage is low in 

wild-type/nude tetraparental chimeric animals87. [Au:OK?] However, embryonic 

bipotent TEC progenitors remain poorly defined and further work is required to 
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examine their phenotypic properties and developmental requirements. Nevertheless, 

there is now some insight into the developmental stages downstream of these cells 

that are responsible for the initial emergence of the first cohorts of cTECs and mTECs 

in the developing embryonic thymus.  

 

Serial progression in embryonic cTEC and mTEC lineages. cTEC and mTEC 

populations in the adult thymus can be separated on the basis of their differential 

expression of a panel of intracellular and cell surface markers10,88. In the embryonic 

thymus however, TECs are less well defined by this approach, making analysis of 

cTEC and mTEC lineage emergence difficult. For example, a keratin5+keratin8+ 

TEC subset dominates in the early embryonic thymus, becoming increasingly rare as 

thymus development progresses89,90. More recently, the cell surface markers CD205 

and CD40 that typically identify adult cTECs and mTECs, respectively, were used to 

assess embryonic TEC development6. Interestingly, CD205+CD40- TECs were 

enriched around E12-13, followed by the progressive appearance of CD205+CD40+ 

and then CD205-CD40+ subsets. Surprisingly, RTOC transplantation experiments 

showed that purified CD205+CD40- TECs could give rise to both cTEC and mTEC 

lineages that were capable of supporting a complete programme of αβ T cell 

development91. Thus, mTEC potential was evident in embryonic TECs that expressed 

markers of the cTEC lineage. This ‘cTEC-like’ phenotype of mTEC progenitors was 

also revealed by assessing the developmental potential of isolated TECs expressing 

high levels of a transgene encoding IL-7–yellow fluorescent protein8. Significantly, 

Cre-based fate mapping studies showed that essentially all TECs present in the adult 

thymus were derived from progenitors that had expressed the cTEC marker β5t during 
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the embryonic period92. The phenotypic identification of mTEC progenitors fits well 

with the initial description of TEC progenitors that have the ability to form clonal 

islands specifically within thymic medullary areas93. Collectively, such findings are 

important as they indicate that during initial thymus formation, TEC progenitors 

acquire hallmarks of the cTEC lineage and then the mTEC lineage in a step-wise 

manner during initial thymus cortex and medulla formation, findings that support a 

‘serial progression model’ of embryonic TEC development94 (Fig. 4). Importantly 

however, given that the only clonal evidence for the existence of embryonic bipotent 

TECs involved the isolation of cells from the thymus at stages prior to the appearance 

of such TEC ‘co-expressers’ (ref. 78), how this progressive acquisition of cTEC and 

then mTEC markers relates to TEC progenitors with cTEC/mTEC bipotency remains 

unclear. Given that TEC co-expressers are readily observable by flow cytometry at 

E15 (ref. 6,91), a time point that correlates with the appearance in E15-17 thymic 

tissue sections of defined thymic medullary areas, it is likely that these cells represent 

lineage-restricted mTEC progenitors. If this is the case, then it is perhaps also likely 

that embryonic TECs that at these stages express cTEC but not mTEC markers are a 

mixture of bipotent progenitors, together with cells that have committed to the cTEC 

lineage. The nature of these embryonic cTEC-restricted progenitors remains elusive. 

Although this has hindered analysis of the mechanisms that control initial thymus 

cortex formation, further assessment of the developmental properties of TEC subsets 

using variety of experimental approaches (Table 1) should aid in understanding how 

formation of the thymic cortex takes place to support the first waves of T cell 

development. 
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mTEC stem and progenitor cells. Important advances have been made in identifying 

the TEC progenitors that initiate thymus medulla formation in the embryonic and 

postnatal thymus. Understanding of these processes is significant in relation to the 

mechanisms by which the thymus medulla controls T cell development. For example, 

the embryonic medulla fosters the generation of distinct waves of tissue-specific γδ T 

cells95,96 whereas AIRE+ mTEC availability in the neonatal period has been shown 

to be particularly important for αβ T cell tolerance induction97. Significantly, Sekai, 

et al. defined a self-renewing subset of embryonic TECs — referred to as mTEC stem 

cells — that express high levels of Claudin 3 or 4 and SSEA1, and that were capable 

of long term and specific generation of mTECs98. [Au:OK?] Interestingly, cells of a 

similar phenotype were detected in the thymi of nude mouse embryos 99, which may 

be consistent with earlier studies indicating that FOXN1 is dispensable for 

cTEC/mTEC lineage choice100. However, given the importance of FOXN1 in TEC 

development83,101,102, it will be difficult to directly assess whether the SSEA1+ 

TECs generated in the absence of FOXN1 are true mTEC stem cells [Au:OK?] . To 

examine the lineage relationships in early mTEC development, we examined the 

ontogenetic appearance of mTEC stem cells with TEC progenitors expressing RANK, 

a key regulator of thymus medulla formation31,38,51. Interestingly, SSEA1+ mTEC 

stem cells were uniformly RANK- and were detectable earlier in ontogeny than 

RANK+ TEC progenitors99. As with SSEA1+ mTEC stem cells, RANK+SSEA1- 

embryonic TECs were restricted to the mTEC lineage. Direct analysis of a precursor–

product relationship between these populations remains to be performed. However, it 

is interesting to note that SSEA1+ mTEC stem cells are detectable in the embryonic 

thymus of Relb-/- mice, which have a profound block in mTEC development, whereas 
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RANK+ mTEC progenitors are absent99. Collectively, these findings are consistent 

with the idea that specification (through an unknown mechanism) of bipotent TECs to 

the mTEC lineage is evident by E12. This process then results in the RELB-

independent generation of a pool of mTEC stem cells that can generate mTEC 

progeny in the long term. Downstream of mTEC stem cells, RELB is then required 

for the generation of RANK+ progenitors, which may then act as a transient source of 

mTECs (Fig. 4). Additional embryonic mTEC progenitor populations have been 

described that were also identified on their basis of RANK expression. Termed 

‘precursors of AIRE+ mTECs’ (pMECs), these RANK+ cells were shown to be 

generated from an earlier ‘pro-pMEC’ population, and were capable of generating 

mature AIRE+ mTECs via a TRAF6-dependent mechanism103. How pro-pMECs and 

pMECs relate to SSEA1+ mTEC stem cells is unclear, although both pMECs and 

mTEC stem cells appear to have the ability to sustain the thymus medulla over the 

long term. Given the key role of RANK in thymus medulla formation, examination of 

the mechanisms regulating its expression is perhaps of particular importance. 

Interestingly, LTβR stimulation was found to increase levels of RANK expression in 

mTEC progenitors in a RELB-dependent manner103,104. Such findings are 

compatible with the lack of detectable levels of RANK expression in one RANK 

reporter mouse line when RELB is absent99, and also the expression of LTβR by 

early mTEC progenitors, including mTEC stem cells98. Although further analysis is 

required to provide a clearer picture of the pathways and relationships described here, 

the finding that multiple tumour necrosis factor receptor (TNFR) superfamily 

members operate in a sequential manner to control the mTEC lineage at least in part 

explains the importance of these receptors in initial thymus medulla formation.  
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Maintenance and persistence of adult TECs. The cellular populations that continue 

to give rise to mature cTEC and mTEC subsets in the postnatal and adult thymus are 

important to identify, as they are required to maintain thymocyte development for the 

continued production of naive αβ T cells. The requirement for TEC progenitor 

populations in the adult thymus is suggested by studies indicating that mature CD80+ 

mTEC turnover is 2-3 weeks30,58 and that the thymic cortex regenerates following 

cTEC-specific lineage ablation105, and by precursor–product studies describing the 

presence of cTEC-restricted progenitors106 [Au:OK?] . The issue of whether 

bipotent TEC progenitors exist in the adult thymus has been examined in several 

studies. Using varying experimental approaches, TEC populations have been 

identified that would indicate that continued cTEC/mTEC production stems from a 

bipotent progenitor106-109. However, although two of these studies assayed the 

developmental potential of defined adult TECs using RTOC or thymus transplant 

assays106,107, differing phenotypes were ascribed to bipotent adult TECs. Wong et 

al.107 described bipotent cells as EPCAM+MHC class IIlow that were further defined 

as integrin α6hi SCA1hi, whereas Ulyanchenko et al. 106 reported bipotency in a 

EPCAM+MHC class IIhi subset that also co-expressed Placenta-expressed transcript 

1 protein (PLET1) and LY51. In marked contrast, results from thymosphere 

assays108,109 indicated that the ability to form these structures was limited to cells 

that lacked the expression of the pan-epithelial marker EPCAM. This finding is 

perhaps particularly important, as the starting point for most studies on TEC 

progenitors involves defining TECs on the basis of an EPCAM+CD45- phenotype. It 

will be important to determine whether the TEC progenitor properties attributed to 
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EPCAM- thymic cells using the thymosphere assay can also be revealed using 

additional experimental approaches. As such, collective interpretation of these results 

is difficult. For example, a clear consensus on the overall definition of cells in the 

adult thymus with cTEC and mTEC potential is awaited. However, it is noteworthy 

that SCA1 is described as a marker of these cells to two reports106,107, which may 

indicate its potential as an adult TEC progenitor marker. In addition, it remains 

unclear where in the adult thymus such bipotent progenitors reside, although the 

cortico-medullary junction has been suggested as an attractive site for downstream 

progeny to replenish both cortical and medullary areas107, Interestingly, the same site 

has also been suggested as a site of mTEC-restricted progenitors110,111. Relevant to 

this, inducible cell fate mapping studies showed adult mTECs were derived from 

progenitors marked by embryonic and neonatal expression of β5t, a finding that is 

consistent with the serial emergence of initial mTEC populations from progenitors 

with cTEC markers. By contrast, β5t+ progenitors in the adult thymus contributed 

little to mTEC generation, even during thymic regeneration following injury60. 

Several explanations for this discrepancy are possible. First, if adult bipotent TECs 

reside within the adult thymus, then unlike their embryonic counterparts, they may 

lack expression of the cTEC marker β5t. Second, adult mTEC maintenance may not 

occur as a result of lineage specification of bipotent cells. Rather, it may take place 

via pool of mTEC-committed progenitors. This second scenario is perhaps consistent 

of the presence of SSEA1+ TECs in the adult thymus98, the embryonic counterparts 

of which demonstrate mTEC stem cell properties. Interestingly, there is evidence that 

ongoing T cell development has a negative impact on the availability of TEC 

progenitor populations, and that blockade of thymocyte differentiation at early stages 
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prevents this erosion98. Although this finding further emphasises the complex 

thymocyte–TEC crosstalk that underpins thymus function, the possible benefits of 

controlling TEC progenitor availability via the efficacy of T cell production is not 

clear. The loss of TEC populations that occurs during age-dependent thymic atrophy 

[G] may have relevance. Here, waves of thymocyte development that establish a 

peripheral T cell pool early in life may also act to reduce further thymopoietic activity 

by reducing TEC progenitor frequency, and so limit the energy-consuming process of 

sustained thymus function. Further work is required to examine how thymocyte 

development impinges on TEC progenitors and their descendants, and how this may 

act as a cellular mechanism to regulate thymus function.  

 

TEC therapy and thymus regeneration 

An increased understanding of the pathways regulating of TEC development has 

significance in understanding how the production of functionally capable and self-

tolerant T cells is controlled. In addition, it also provides a potential opportunity 

whereby harnessing TEC progenitor populations might be used as therapeutic means 

to improve thymus function. For example, several studies have shown that targeting 

FOXN1, a key transcriptional regulator of thymus development and function, may be 

a means to either regenerate or create functional thymic tissue. For example, 

upregulating FOXN1 expression by TECs present in the thymus of aged mice led to 

improvements in thymopoiesis112. Significantly, these changes were notable in mice 

up to two years of age, indicating that enhancing FOXN1 expression effectively 

reversed the severe decline in T cell production caused by age-related thymic atrophy. 

Strikingly, induction of FOXN1 overexpression in mouse embryonic fibroblasts was 

also shown to be sufficient to promote reprogramming of cells towards the TEC 
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lineage113, perhaps providing a complementary approach with the potential to 

therapeutically restore and/or replace thymus function. However, whereas 

manipulation of FOXN1 expression increased both recent thymic emigrants and naive 

T cells112, the functional properties of these cells was not determined in an immune 

response, such as following infectious challenge. In terms of potential therapeutic 

benefit, it will be of interest to examine whether the recovery in thymopoiesis that 

follows manipulation of FOXN1 expression is also accompanied by improved T cell 

mediated immune responses.  

 Finally, several studies have also explored the possibility of generating functional 

thymic tissue from pluripotent stem cells, an approach that may provide a readily 

available source of TECs and avoid unwanted issues with HLA-mismatching. 

Significantly, culture conditions have been reported for both human and mouse 

embryonic stem cells (ESCs) in which some molecular TEC properties are 

acquired114-118. In some cases when transplanted into mice, cells were also shown 

to create cortical and medullary thymic tissues and that supported T cell development 

to varying extents. As discussed in detail elsewhere119,120, while such approaches 

hold much promise, the relative efficiency of ESCs to TEC differentiation appears to 

remain rather low, and it is unclear whether ESC-derived TEC progenitors can give 

rise to a full spectrum of TEC subsets, including CCL21+ and FEZF2+ mTEC 

populations. Moreover, the ability of ESC-derived TECs to maintain T cell 

development over long periods has not been fully examined. Nevertheless, the 

adaptation of basic mechanisms of TEC development towards TEC therapies 

continues to represent an important means to boost immune system function.  

 

Conclusions and perspectives 
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The intrathymic microenvironments that control the production of functionally 

competent and self-tolerant αβ T cells are formed by heterogeneous epithelial cell 

populations that guide immature thymocytes through key phases in their development. 

Increasingly, TEC heterogeneity is now being revealed at both phenotypic and 

functional levels, the latter mapping onto the ability of cTEC and mTEC 

subpopulations to support particular stages of thymocyte development. As such, the 

importance of TEC diversity for T cell development is reinforced. In addition, our 

knowledge on TEC diversity has stimulated investigation of the precursor-product 

relationships that give rise to functionally distinct cTEC and mTEC lineages. In this 

way, several experimental approaches have resulted in the identification of various 

TEC progenitors, including cells with cTEC and mTEC bipotency, as well as lineage-

restricted TEC progenitors. In the embryonic thymus, a consensus pathway seems to 

be emerging in which bipotent TEC progenitors initially acquire cTEC features during 

their development, which is then followed by specification towards the mTEC lineage 

and the production of SSEA1+ mTEC stem cells. Downstream, such cells may then 

produce mTEC progenitors, including those expressing RANK. Whether this pathway 

fully explains mTEC heterogeneity within a single mTEC lineage, or whether 

multiple mTEC ‘sub-lineages’ exist that can be defined by their expression of 

functionally distinct molecular profiles, remains to be seen. In contrast to TEC 

pathways in the embryonic and postnatal thymus, there is still uncertainty regarding 

how cTEC and mTEC lineages specify and diverge, and how they are maintained in 

the adult thymus. Whether similar processes regulate both the homeostatic turnover of 

cTECs and mTECs and thymus recovery following injury, is also not fully clear. A 

better understanding of the pathways and molecular signals that mediate the recovery 

of cTEC and mTEC subpopulations in the adult thymus is relevant for future therapies 
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aiming to restore or improve thymic function in various clinical situations, including 

post-chemotherapy immune cell reconstitution. The continued identification and 

understanding of TEC heterogeneity will likely provide significant clues and tools 

with which to define a clearer picture of the pathways that lead to the continuation of 

cTEC and mTEC diversity. 
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Figure legends 

 

Figure 1 | Diverse TECs constitute multiple thymic microenvironments. 

a) The cortex-medulla architecture of the adult mouse thymus. Cortical thymic 

epithelial cells (cTECs) during the perinatal period are marked by expression of 

enhanced green fluorescent protein (EGFP) under the control of the thymoproteasome 

component β5t60, and medullary thymic epithelial cells (mTECs) are marked by 

expression of autoimmune regulator (AIRE; red) and keratin 5 (blue).  

b) cTEC and mTEC subpopulations coordinate the development and repertoire 

selection of T cells. Heterogeneous functions of cTECs include, although not limited 

to, the specification of early thymic progenitors (ETPs) to the T cell lineage and the 

promotion of positive selection of newly generated CD4+CD8+ (double-positive, DP) 

thymocytes. Different mTEC subpopulations attract the migration of positively 

selected thymocytes to the medullary region and establish self-tolerance in T cells by 

inducing negative selection of self-reactive CD4+CD8- or CD4-CD8+ (single-

positive, SP) thymocytes and by promoting the generation of regulatory T (Treg) 

cells. 

 

Figure 2 | cTEC heterogeneity. 

a) Developmental progression of cortical thymic epithelial cells (cTECs). cTEC 

expression of cell-surface molecules including MHC class II, CD40 and atypical 

chemokine receptor 4 (ACKR4) increases with ontogeny. The development of cTECs 

is regulated by signals provided by co-developing thymocytes. 

b) cTECs in adult mice are heterogeneous in the expression of functionally relevant 

molecules, including delta-like ligand 4 (DLL4) and interleukin-7 (IL-7). 
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c) Adult mouse cTECs contain thymic nurse cells, which envelop many thymocytes 

and provide a microenvironment for the optimal T cell receptor (TCR) repertoire 

selection of CD4+CD8+ thymocytes through the secondary TCRα rearrangement. 

 

Figure 3 | mTEC heterogeneity. 

In the adult thymus, medullary thymic epithelial cells (mTECs) are typically defined 

by expression of epithelial cell adhesion molecule (EPCAM)+ and lack of expression 

of CD45, and either reactivity to the lectin UEA1 or lack expression of the cTEC 

markers LY51 or CD205. The mTEC population can be subdivided on the basis of 

MHC class II and CD80 expression levels, to identify an MHC class IIlowCD80low 

(mTEClow) subset and an MHC class IIhiCD80hi (mTEChi) subset. While direct 

precursor-product analysis shows that the mTEClow subset contains mTEChi 

progenitors, the mTEClow subset has significant heterogeneity, and probably contains 

both immature and mature subsets. The mature subsets may include a mature CC-

chemokine ligand 21 (CCL21)-expressing mTEClow subset and a mTEClow subset 

that is generated post-AIRE expression from a mTEChi subset. The mTEChi subset is 

also heterogeneous, with subpopulations defined by their expression of key regulators 

of tissue restricted self-antigen expression (AIRE and Fez family zinc finger protein 2 

(FEZF2)), as well as regulators of mTEC homeostasis (osteoprotegerin (OPG)). 

 

Figure 4 | Origin and development of TECs: lessons from the embryonic thymus. 

The diagram summarizes our current knowledge regarding the development of 

cortical and medullary thymic epithelial cell (cTEC and mTEC) lineages, and it is 

largely based on studies analysing the embryonic thymus. Bipotent TEC progenitors 
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differentiate by expressing a panel of markers that are typical of the cTEC lineage. 

Specification towards the mTEC lineage via an unknown mechanism results in the 

generation of SSEA1+ mTEC stem cells, the subsequent development is RELB 

dependent and involves expression the mTEC regulator RANK. Crosstalk between 

RANK+ mTEC progenitors then triggers differentiation towards AIRE+ mTECs. 
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Box 1 | Thymocyte traffic during their development in the thymus  

The thymus attracts haematopoietic stem cell-derived T lymphoid progenitors and 

induces their differentiation into T cell receptor (TCR)-expressing CD4+CD8+ 

double-positive (DP) thymocytes in the microenvironment of the thymic cortex. The 

recruitment of T lymphoid progenitors to the thymus, and their entry to the thymic 

microenvironment depends on multiple chemokine receptors including CC-

chemokine receptor 7 (CCR7), CCR9 and CXC-chemokine receptor 4 (CXCR4). DP 

thymocytes that interact at low affinity with self-peptide–MHC complexes presented 

by cortical thymic epithelial cells (cTECs) are induced to survive and differentiate 

into CD4+CD8 or CD4-CD8+ single-positive (SP) thymocytes. This process termed 

positive selection contributes to the enrichment of a self-MHC-restricted and 

potentially useful T cell repertoire. Positively selected thymocytes are induced to 

express chemokine receptor CCR7 and are attracted to migrate into the thymic 

medulla, where CCR7 ligands are abundant. In the thymic medulla, a variety of 

antigen presenting cells (APCs), including medullary thymic epithelial cells (mTECs) 

and dendritic cells, present a wide range of self-antigens, including tissue-restricted 

self-antigens produced by mTECs through the mechanism of promiscuous gene 

expression. High affinity TCR interactions with those self-antigens displayed in the 

thymic medulla induce the deletion of positively selected thymocytes or the 

differentiation into regulatory T cells, contributing to the establishment of self-

tolerance in T cells. Mature SP thymocytes express S1P1, a receptor for sphingosine-

1-phosphate (S1P), which governs their egress out of the thymus. (Refer to Refs 3, 10, 

15 for more detail) 
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Table  1 | Experimental approaches to study thymic epithelial cell lineage 

development 

Approach	   Definition	   Advantages	   Disadvantages	   Refs	  
Ontogenetic	  
analysis	  	  
	  

Phenotypic	  
characterization	  of	  
embryonic	  thymic	  
epithelial	  cell	  (TEC)	  
populations	  at	  
defined	  
developmental	  stages	  
using	  flow	  cytometry	  
and/or	  confocal	  
microscopy.	  

• Simple	  to	  perform.	  
• Ex	  vivo	  analysis.	  
• Provides	  detailed	  
multiparameter	  
characterization	  of	  embryonic	  
TECs	  using	  well-‐defined	  cTEC	  
and	  mTEC	  markers.	  

• Provides	  static	  
analysis,	  a	  ‘snapshot’	  of	  
TEC	  populations	  at	  any	  
given	  developmental	  
stage.	  
• Does	  not	  allow	  for	  
direct	  analysis	  of	  
precursor-‐product	  
relationships	  

6,	  7,	  
8,	  22,	  
86	  

Germline	  or	  
inducible	  Cre-‐
mediated	  cell	  
fate	  mapping	  	  
	  

Expression	  of	  a	  
fluorescent	  protein	  is	  
driven	  by	  a	  TEC	  
expressed	  gene	  
promoter	  in	  a	  
constitutive	  or	  
inducible	  manner.	  

• In	  vivo	  analysis	  of	  stages	  in	  
TEC	  development	  using	  
defined	  genetic	  markers.	  
• Inducible	  fate	  mapping	  
allows	  for	  examination	  of	  
stages	  in	  TEC	  development	  at	  
both	  embryonic	  and	  adult	  
stages.	  	  

• Limited	  availability	  
of	  cTEC	  and	  mTEC	  
lineage-‐specific	  Cre-‐
based	  models,	  
particularly	  inducible	  
Cre	  systems.	  

60,	  
61,	  
63,	  
111	  

Clonal	  thymus	  
microinjection	  	  
	  

The	  introduction	  of	  a	  
genetically	  marked	  
single	  TEC	  into	  a	  wild-‐
type	  ‘foster’	  thymus,	  
followed	  by	  thymus	  
transplantation.	  

• Provides	  direct	  analysis	  of	  
precursor-‐product	  
relationships	  at	  the	  single	  cell	  
level.	  
• Lineage	  potential	  is	  assessed	  
within	  an	  intact	  thymic	  
microenvironment	  in	  vivo.	  

• Labour	  intensive	  
• Relatively	  low	  clonal	  
success	  rate	  

78	  

Reaggregate	  
thymus	  organ	  
culture	  	  
	  

The	  in	  vitro	  
generation	  of	  intact	  
three-‐dimensional	  
thymus	  structures	  
from	  purified	  TEC	  
subsets.	  

• Can	  be	  combined	  with	  in	  
vivo	  thymus	  transplantation	  to	  
assess	  lineage	  relationships.	  
• Simple	  to	  perform	  

• Relies	  on	  population	  
analysis	  and	  high	  cell	  
purity	  
• Requires	  the	  
isolation	  of	  candidate	  
TEC	  populations	  using	  
a	  limited	  array	  of	  cell	  
surface	  markers	  
and/or	  fluorescent	  
protein	  tags.	  

8,	  31,	  
91,	  
96,	  
98,	  
99,	  
103,	  
106,	  
107	  

Thymospheres	  	  
	  

The	  in	  vitro	  
generation	  of	  
spheroid	  structures	  
generated	  from	  
single	  cells	  present	  
within	  dispersed	  
thymic	  stromal	  
preparations.	  

• Enables	  clonal	  analysis	  of	  
thymic	  stromal	  cells	  
• Thymosphere-‐derived	  cells	  
can	  be	  mixed	  with	  foster	  
thymic	  tissue	  in	  RTOC	  and	  
combined	  with	  thymus	  
transplantation	  for	  in	  vivo	  
analysis.	  

• Requires	  low-‐
attachment	  in	  vitro	  
culture	  conditions	  that	  
do	  not	  provide	  the	  
typical	  reticular	  
organization	  of	  TECs.	  

108,	  
109	  
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Glossary  

 

Positive selection: The process in that newly generated DP thymocytes that interact at 

low affinity with self-peptide–MHC complexes presented by cTECs are induced to 

survive and differentiate into SP thymocytes. 

 

Hassall’s corpuscles:  A fraction of mTECs that form a concentric epithelial structure, 

which is apparent in the thymus of several limited species including human. 

 

Autoimmune regulator: A nuclear protein expressed by a subpopulation of mTECs 

and essential for the establishment of self-tolerance in T cells. 

 

Promiscuous gene expression: A characteristic unique to mTECs in that virtually all 

genes, including the tissue-restricted self-antigens, are expressed.  

 

nude mouse: A naturally occurring mouse strain in which congenital loss of the 

transcription factor Foxn1 causes defective hair growth and defective TEC 

development, resulting in defective T cell production and severe immunodeficiency. 

 

Thymic atrophy: A reduction in size of the thymus, caused by ageing, viral infection, 

irradiation, and many other stresses, and associated with the decline in T cell 

production. 
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Online summary 

 

cTECs are functionally heterogeneous, although T-lineage-specifying and positive-

selection-inducing functions appear to overlap between individual cTECs.  

 

Thymic nurse cells represent a subpopulation of cTECs, which are morphologically 

and functionally specialized for optimizing positive selection of thymocytes.  

 

Promiscuous gene expression in individual mTECs is heterogeneous, and mosaic 

expression comprises a pool of the promiscuously expressed genes in total mTECs. 

 

CCL21-expressing mTECs represent a functionally mature mTEClow subpopulation, 

which resemble post-AIRE mTECs. 

 

Embryonic TEC progenitors acquire hallmarks of the cTEC lineage and then the 

mTEC lineage in a step-wise manner during initial thymus cortex and medulla 

formation. 

 

A self-renewing subset of embryonic TECs, referred to as mTEC stem cells, capable 

of long term and specific generation of mTECs has been identified. 
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