1,421 research outputs found
Collective pinning of imperfect vortex lattices by material line defects in extreme type-II superconductors
The critical current density shown by a superconductor at the extreme type-II
limit is predicted to follow an inverse square-root power law with external
magnetic field if the vortex lattice is weakly pinned by material line defects.
It acquires an additional inverse dependence with thickness along the line
direction once pinning of the interstitial vortex lines by material point
defects is included. Moderate quantitative agreement with the critical current
density shown by second-generation wires of high-temperature superconductors in
kG magnetic fields is achieved at liquid-nitrogen temperature.Comment: 10 pages, 3 figures, 2 tables. To appear in Physical Review
Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis
The multi-species coalescent provides an elegant theoretical framework for
estimating species trees and species demographics from genetic markers.
Practical applications of the multi-species coalescent model are, however,
limited by the need to integrate or sample over all gene trees possible for
each genetic marker. Here we describe a polynomial-time algorithm that computes
the likelihood of a species tree directly from the markers under a finite-sites
model of mutation, effectively integrating over all possible gene trees. The
method applies to independent (unlinked) biallelic markers such as well-spaced
single nucleotide polymorphisms (SNPs), and we have implemented it in SNAPP, a
Markov chain Monte-Carlo sampler for inferring species trees, divergence dates,
and population sizes. We report results from simulation experiments and from an
analysis of 1997 amplified fragment length polymorphism (AFLP) loci in 69
individuals sampled from six species of {\em Ourisia} (New Zealand native
foxglove)
Contamination of spacecraft by recontact of dumped liquids
Liquids partially freeze when dumped from spacecraft producing particles which are released into free space at various velocities. Recontact of these particles with the spacecraft is possible for specific particle sizes and velocities and, therefore, can become contamination for experiments within the spacecraft or released experiments as a result of waste and potable water dumped from Space Shuttle. An examination of dump characteristics was conducted on STS-29 using both on-board video records and ground based measurements. A preliminary analysis of data from this flight indicates particle velocities are in the range of 30 to 75 ft/sec and recontact is possible for limited particle sizes
Angular dependent vortex pinning mechanisms in YBCO coated conductors and thin films
We present a comparative study of the angular dependent critical current
density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and
SrTiO3 substrates. We identify three angular regimes where pinning is dominated
by different types of correlated and uncorrelated defects. We show that those
regimes are present in all cases, indicating that the pinning mechanisms are
the same, but their extension and characteristics are sample dependent,
reflecting the quantitative differences in texture and defect density. In
particular, the more defective nature of the films on IBAD turns into an
advantage as it results in stronger vortex pinning, demonstrating that the
critical current density of the films on single crystals is not an upper limit
for the performance of the IBAD coated conductors.Comment: 14 pages, 3 figures. Submitted to AP
Reflectivity and Microwave Absorption in Crystals with Alternating Intrinsic Josephson Junctions
We compute the frequency and magnetic field dependencies of the reflectivity
in layered superconductors with two alternating intrinsic Josephson
junctions with different critical current densities and quasiparticle
conductivities for the electric field polarized along the c-axis. The parameter
describing the electronic compressibility of the layers and the charge
coupling of neighboring junctions was extracted for the
SmLaSrCuO superconductor from two independent
optical measurements, the fit of the loss function at zero magnetic
field and the magnetic field dependence of the peak positions in .
The experiments are consistent with a free electron value for near
the Josephson plasma frequencies.Comment: 4 pages, 4 postscript figures, misprints in table correcte
Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?
Past vegetation and climate changes reconstructed using two pollen records from Lakes Maridor and Nguène, located in the coastal savannas and inland rainforest of Gabon, respectively, provide new insights into the environmental history of western equatorial African rainforests during the last 4500 cal yr BP. These pollen records indicate that the coastal savannas of western equatorial Africa did not exist during the mid-Holocene and instead the region was covered by evergreen rainforests. From ca. 4000 cal yr BP a progressive decline of inland evergreen rainforest, accompanied by the expansion of semi-deciduous rainforest, occurred synchronously with grassland colonisation in the coastal region of Gabon. The contraction of moist evergreen rainforest and the establishment of coastal savannas in Gabon suggest decreasing humidity from ca. 4000 cal yr BP. The marked reduction in evergreen rainforest and subsequent savanna expansion was followed from 2700 cal yr BP by the colonization of secondary forests dominated by the palm, <i>Elaeis guineensis</i>, and the shrub, <i>Alchornea cordifolia</i> (Euphorbiaceae). A return to wetter climatic conditions from about 1400 cal yr BP led to the renewed spread of evergreen rainforest inland, whereas a forest-savanna mosaic still persists in the coastal region. There is no evidence to suggest that the major environmental changes observed were driven by human impact
The effect of an in-plane magnetic field on the interlayer transport of quasiparticles in layered superconductors
We consider the quasiparticle c-axis conductivity in highly anisotropic
layered compounds in the presence of the magnetic field parallel to the layers.
We show that at low temperatures the quasiparticle interlayer conductivity
depends strongly on the orientation of the in-plane magnetic field if the
excitation gap has nodes on the Fermi surface. Thus measurements of the
angle-dependent c-axis (out-of-plane) magnetoresistance, as a function of the
orientation of the magnetic field in the layers, provide information on the
momentum dependence of the superconducting gap (or pseudogap) on the Fermi
surface. Clean and highly anisotropic layered superconductors seem to be the
best candidates for probing the existence and location of the nodes on the
Fermi surface.Comment: 4 pages RevTeX, including 2 PostScript figures, to appear in Phys.
Rev. Let
New superconducting phases in field-induced organic superconductor lambda-(BETS)2FeCl4
We derive the parallel upper critical field, Hc2, as a function of the
temperature T in quasi-2D organic compound lambda-(BETS)2FeCl4, accounting for
the formation of the nonuniform LOFF state. To further check the 2D LOFF model
we propose to study the Hc2(T) curve at low T in tilted fields, where the
vortex state is described by the high Landau level functions characterized by
the index n. We predict a cascade of first order transitions between vortex
phases with different n, between phases with different types of the symmetry at
given n and the change of the superconducting transition from the second order
to the first order as FeCl4 ions are replaced partly by GaCl4 ions.Comment: 4 pages, 3 figures, to be published in PR
Optical Properties of Crystals with Spatial Dispersion: Josephson Plasma Resonance in Layered Superconductors
We derive the transmission coefficient, , for grazing incidence of
crystals with spatial dispersion accounting for the excitation of multiple
modes with different wave vectors for a given frequency . The
generalization of the Fresnel formulas contains the refraction indices of these
modes as determined by the dielectric function . Near
frequencies , where the group velocity vanishes, depends
also on an additional parameter determined by the crystal microstructure. The
transmission is significantly suppressed, if one of the excited modes is
decaying into the crystal. We derive these features microscopically for the
Josephson plasma resonance in layered superconductors.Comment: 4 pages, 2 figures, epl.cls style file, minor change
- …
