2,433 research outputs found

    Riding the (brain) waves! Using neural oscillations to inform bilingualism research

    Get PDF
    The study of the brains’ oscillatory activity has been a standard technique to gain insights into human neurocognition for a relatively long time. However, as a complementary analysis to ERPs, only very recently has it been utilized to study bilingualism and its neural underpinnings. Here, we provide a theoretical and methodological starter for scientists in the (psycho)linguistics and neurocognition of bilingualism field(s) to understand the bases and applications of this analytical tool. Towards this goal, we provide a description of the characteristics of the human neural (and its oscillatory) signal, followed by an in-depth description of various types of EEG oscillatory analyses, supplemented by figures and relevant examples. We then utilize the scant, yet emergent, literature on neural oscillations and bilingualism to highlight the potential of how analyzing neural oscillations can advance our understanding of the (psycho)linguistic and neurocognitive understanding of bilingualism

    High Speed Dynamics of Collapsing Cylindrical Dust Fluid

    Full text link
    We construct approximate solutions that will describe the last stage of cylindrically symmetric gravitational collapse of dust fluid. Just before the spacetime singularity formation, the speed of the dust fluid might be almost equal to the speed of light by gravitational acceleration. Therefore the analytic solution describing the dynamics of cylindrical null dust might be the crudest approximate solution of the last stage of the gravitational collapse. In this paper, we regard this null dust solution as a background and perform `high-speed approximation' to know the gravitational collapse of ordinary timelike dust fluid; the `deviation of the timelike 4-velocity vector field from null' is treated as a perturbation. In contrast with the null dust approximation, our approximation scheme can describe the generation of gravitational waves in the course of the cylindrically symmetric dust collapse.Comment: 15 page

    The influence of interlayer asymmetry on the magnetospectroscopy of bilayer graphene.

    Get PDF
    We present a self-consistent calculation of the interlayer asymmetry in bilayer graphene caused by an applied electric field in magnetic fields. We show how this asymmetry influences the Landau level spectrum in bilayer graphene and the observable inter-Landau level transitions when they are studied as a function of high magnetic field at fixed filling factor as measured experimentally in Ref. [1]. We also analyze the magneto-optical spectra of bilayer flakes in the photon-energy range corresponding to transitions between degenerate and split bands of bilayers

    Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies

    Full text link
    The surface and electronic structure of MOCVD-grown layers of Ga(0.92)In(0.08)N have been investigated by means of photoemission. An additional feature at the valence band edge, which can be ascribed to the presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface was prepared by argon ion sputtering and annealing. Stability of chemical composition of the investigated surface subjected to similar ion etching was proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure

    Lattice distortions in a sawtooth chain with Heisenberg and Ising bonds

    Full text link
    An exactly solvable model of the sawtooth chain with Ising and Heisenberg bonds and with coupling to lattice distortion for Heisenberg bonds is considered in the magnetic field. Using the direct transfer-matrix formalism an exact description of the thermodynamic functions is obtained. The ground state phase diagrams for all regions of parameters values containing phases corresponding to the magnetization plateaus at M=0,1/4M=0,1/4 and 1/2 have been obtained. Exact formulas for bond distortions for various ground states are presented. A novel mechanism of magnetization plateau stabilization corresponding to M=1/4M=1/4 state is reported.Comment: 16 pages, 12 figure

    Uptake, accumulation and metabolization of the antidepressant fluoxetine by Mytilus galloprovincialis

    Get PDF
    Fluoxetine, a selective serotonin re-uptake inhibitor (SSRI) antidepressant, is among the most prescribed pharmaceutical active substances worldwide. This study aimed to assess its accumulation and metabolization in the mussel Mytillus galloprovincialis, considered an excellent sentinel species for traditional and emerging pollutants. Mussels were collected from Ria Formosa Lagoon, Portugal, and exposed to a nominal concentration of fluoxetine (75 ng L-1) for 15 days. Approximately 1 g of whole mussel soft tissues was extracted with acetonitrile:formic acid, loaded into an Oasis MCX cartridge, and fluoxetine analysed by liquid chromatography with tandem mass spectrometry (LC-MSn). After 3 days of exposure, fluoxetine was accumulated in 70% of the samples, with a mean of 2.53 ng g(-1) dry weight (d.w.) and norfluoxetine was only detected in one sample (10%), at 3.06 ng g(-1) d.w. After 7 days of exposure, the accumulation of fluoxetine and norfluoxetine increased up to 80 and 50% respectively, and their mean accumulated levels in mussel tissues were up to 4.43 and 2.85 ng g(-1) d.w., respectively. By the end of the exposure period (15 days), both compounds were detected in 100% of the samples (mean of 9.31 and 11.65 ng g(-1) d.w., respectively). Statistical analysis revealed significant accumulation differences between the 3rd and 15th day of exposure for fluoxetine, and between the 3rd and 7th against the 15th day of exposure for norfluoxetine. These results suggest that the fluoxetine accumulated in mussel tissues is likely to be metabolised into norfluoxetine with the increase of the time of exposure, giving evidence that at these realistic environmental concentrations, toxic effects of fluoxetine in mussel tissues may occur. (C) 2016 Elsevier Ltd. All rights reserved

    Absence of trapped surfaces and singularities in cylindrical collapse

    Full text link
    The gravitational collapse of an infinite cylindrical thin shell of generic matter in an otherwise empty spacetime is considered. We show that geometries admitting two hypersurface orthogonal Killing vectors cannot contain trapped surfaces in the vacuum portion of spacetime causally available to geodesic timelike observers. At asymptotic future null infinity, however, congruences of outgoing radial null geodesics become marginally trapped, due to convergence induced by shear caused by the interaction of a transverse wave component with the geodesics. The matter shell itself is shown to be always free of trapped surfaces, for this class of geometries. Finally, two simplified matter models are analytically examined. For one model, the weak energy condition is shown to be a necessary condition for collapse to halt; for the second case, it is a sufficient condition for collapse to be able to halt.Comment: 26 pages, revtex4, 1 eps figure; matches version to appear in Phys. Rev. D (in press

    High-Speed Cylindrical Collapse of Two Perfect Fluids

    Full text link
    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by cs,dsc_s, d_s. It is shown that the high-speed approximation scheme breaks down by non-zero pressures p1,p2p_1, p_2 when cs,dsc_s, d_s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainity on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra
    • 

    corecore