3,036 research outputs found

    Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS

    Get PDF
    Production probabilities for strange clusters and strange matter in Au+Au collisions at AGS energy are obtained in the thermal fireball model. The only parameters of the model, the baryon chemical potential and temperature, were determined from a description of the rather complete set of hadron yields from Si+nucleus collisions at the AGS. For the production of light nuclear fragments and strange clusters the results are similar to recent coalescence model calculations. Strange matter production with baryon number larger than 10 is predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures

    Centrality and Energy Dependence of Proton, Light Fragment and Hyperon Production

    Get PDF
    Recent results of the NA49 collaboration are discussed. These include the energy dependence of stopping and the production of the light fragments t and 3He. New data on the system size dependence of hyperon production at 40A and 158AGeV are also presented.Comment: 4 pages, Quark Matter 2006 proceeding

    The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC

    Full text link
    We investigate the production of hadrons in nuclear collisions within the framework of the thermal (or statistical hadronization) model. We discuss both the ligh-quark hadrons as well as charmonium and provide predictions for the LHC energy. Even as its exact magnitude is dependent on the charm production cross section, not yet measured in Pb-Pb collisions, we can confidently predict that at the LHC the nuclear modification factor of charmonium as a function of centrality is larger than that observed at RHIC and compare the experimental results to these predictions.Comment: 4 pages, 3 figures; proceedings of QM201

    Femtoscopy correlations of kaons in Pb+PbPb + Pb collisions at LHC within hydrokinetic model

    Full text link
    We provide, within the hydrokinetic model, a detailed investigation of kaon interferometry in Pb+PbPb+Pb collisions at LHC energy (sNN=2.76\sqrt{s_{NN}} = 2.76 TeV). Predictions are presented for 1D interferometry radii of KS0KS0K^0_SK^0_S and K±K±K^{\pm}K^{\pm} pairs as well as for 3D femtoscopy scales in out, side and long directions. The results are compared with existing pion interferometry radii. We also make predictions for full LHC energy.Comment: 12 pages, 6 figure

    Strange Particle Production from SIS to LHC

    Full text link
    >1A review of meson emission in heavy ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of K+K^+ and KK^- emission at low incident energies. In the framework of this statistical model it is shown that the experimentally observed equality of K+K^+ and KK^- rates at ``threshold-corrected'' energies ssth\sqrt{s} - \sqrt{s_{th}} is due to a crossing of two excitation functions. Furthermore, the independence of the K+K^+ to KK^- ratio on the number of participating nucleons observed between SIS and RHIC is consistent with this model. It is demonstrated that the KK^- production at SIS energies occurs predominantly via strangeness exchange and this channel is approaching chemical equilibrium. The observed maximum in the K+/π+K^+/\pi^+ excitation function is also seen in the ratio of strange to non-strange particle production. The appearance of this maximum around 30 AA\cdotGeV is due to the energy dependence of the chemical freeze-out parameters TT and μB\mu_B.Comment: Presented at the International Workshop "On the Physics of the Quark-Gluon Plasma", Palaiseau, France, September 2001. 10 pages, 8 figure

    Transverse Momentum Spectra of J/ψJ/\psi and ψ\psi^{\prime} Mesons from Quark Gluon Plasma Hadronization in Nuclear Collisions

    Full text link
    Recent results on transverse mass spectra of J/ψJ/\psi and ψ\psi^{\prime} mesons in central Pb+Pb collisions at 158 A\cdotGeV are considered. It is shown that those results support a hypothesis of statistical production of charmonia at hadronization and suggest the early thermal freeze--out of J/ψJ/\psi and ψ\psi^{\prime} mesons. Based on this approach the collective transverse velocity of hadronizing quark gluon plasma is estimated to be 0.2 \approx 0.2. Predictions for transverse mass spectra of hidden and open charm mesons at SPS and RHIC are discussed.Comment: Four pages, one figur

    THERMUS -- A Thermal Model Package for ROOT

    Full text link
    THERMUS is a package of C++ classes and functions allowing statistical-thermal model analyses of particle production in relativistic heavy-ion collisions to be performed within the ROOT framework of analysis. Calculations are possible within three statistical ensembles; a grand-canonical treatment of the conserved charges B, S and Q, a fully canonical treatment of the conserved charges, and a mixed-canonical ensemble combining a canonical treatment of strangeness with a grand-canonical treatment of baryon number and electric charge. THERMUS allows for the assignment of decay chains and detector efficiencies specific to each particle yield, which enables sensible fitting of model parameters to experimental data.Comment: to be published in Computer Physics Communication

    Omega, J/psi and psi' Transverse Mass Spectra at RHIC

    Get PDF
    The transverse mass spectra of J/psi and psi' mesons and Omega hyperons produced in central Au+Au collisions at RHIC energies are discussed within a statistical model used successfully for the interpretation of the SPS results. The comparison of the presented model with the future RHIC data should serve as a further crucial test of the hypothesis of statistical production of charmonia at hadronization. Finally, in case of validity, the approach should allow to estimate the mean transverse flow velocity at the quark gluon plasma hadronization.Comment: revised version to appear in Phys. Lett.

    Recombination of Shower Partons at High pTp_T in Heavy-Ion Collisions

    Full text link
    A formalism for hadron production at high \pt in heavy-ion collisions has been developed such that all partons hadronize by recombination. The fragmentation of a hard parton is accounted for by the recombination of shower partons that it creates. Such shower partons can also recombine with the thermal partons to form particles that dominate over all other possible modes of hadronization in the 3<pT<83<p_T<8 GeV range. The results for the high \pt spectra of pion, kaon, and proton agree well with experiments. Energy loss of partons in the dense medium is taken into account on the average by an effective parameter by fitting data, and is found to be universal independent of the type of particles produced, as it should. Due to the recombination of thermal and shower partons, the structure of jets produced in nuclear collisions is different from that in pppp collisions. The consequence on same-side correlations is discussed.Comment: This revised version contains minor changes and a new figure
    corecore