2,317 research outputs found

    Looking away from faces: influence of high-level visual processes on saccade programming

    No full text
    Human faces capture attention more than other visual stimuli. Here we investigated whether such face-specific biases rely on automatic (involuntary) or voluntary orienting responses. To this end, we used an anti-saccade paradigm, which requires the ability to inhibit a reflexive automatic response and to generate a voluntary saccade in the opposite direction of the stimulus. To control for potential low-level confounds in the eye-movement data, we manipulated the high-level visual properties of the stimuli while normalizing their global low-level visual properties. Eye movements were recorded in 21 participants who performed either pro- or anti-saccades to a face, car, or noise pattern, randomly presented to the left or right of a fixation point. For each trial, a symbolic cue instructed the observer to generate either a pro-saccade or an anti-saccade. We report a significant increase in anti-saccade error rates for faces compared to cars and noise patterns, as well as faster pro-saccades to faces and cars in comparison to noise patterns. These results indicate that human faces induce stronger involuntary orienting responses than other visual objects, i.e., responses that are beyond the control of the observer. Importantly, this involuntary processing cannot be accounted for by global low-level visual factors

    The H-Index as a Quantitative Indicator of the Relative Impact of Human Diseases

    Get PDF
    Assessment of the relative impact of diseases and pathogens is important for agencies and other organizations charged with providing disease surveillance, management and control. It also helps funders of disease-related research to identify the most important areas for investment. Decisions as to which pathogens or diseases to target are often made using complex risk assessment approaches; however, these usually involve evaluating a large number of hazards as it is rarely feasible to conduct an in-depth appraisal of each. Here we propose the use of the H-index (or Hirsch index) as an alternative rapid, repeatable and objective means of assessing pathogen impact. H-index scores for 1,414 human pathogens were obtained from the Institute for Scientific Information's Web of Science (WOS) in July/August 2010. Scores were compared for zoonotic/non-zoonotic, and emerging/non-emerging pathogens, and across taxonomic groups. H-indices for a subset of pathogens were compared with Disability Adjusted Life Year (DALY) estimates for the diseases they cause. H-indices ranged from 0 to 456, with a median of 11. Emerging pathogens had higher H-indices than non-emerging pathogens. Zoonotic pathogens tended to have higher H-indices than human-only pathogens, although the opposite was observed for viruses. There was a significant correlation between the DALY of a disease and the H-index of the pathogen(s) that cause it. Therefore, scientific interest, as measured by the H-index, appears to be a reflection of the true impact of pathogens. The H-index method can be utilized to set up an objective, repeatable and readily automated system for assessing pathogen or disease impact

    Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe

    Get PDF
    Climate change is expected to threaten human health and well-being via its effects on climate-sensitive infectious diseases, potentially changing their spatial distributions, affecting annual/seasonal cycles, or altering disease incidence and severity. Climate sensitivity of pathogens is a key indicator that diseases might respond to climate change, but the proportion of pathogens that is climate-sensitive, and their characteristics, are not known. The climate sensitivity of European human and domestic animal infectious pathogens, and the characteristics associated with sensitivity, were assessed systematically in terms of selection of pathogens and choice of literature reviewed. Sixty-three percent (N = 157) of pathogens were climate sensitive; 82% to primary drivers such as rainfall and temperature. Protozoa and helminths, vector-borne, foodborne, soilborne and waterborne transmission routes were associated with larger numbers of climate drivers. Zoonotic pathogens were more climate sensitive than human- or animal-only pathogens. Thirty-seven percent of disability-adjusted-life-years arise from human infectious diseases that are sensitive to primary climate drivers. These results help prioritize surveillance for pathogens that may respond to climate change. Although this study identifies a high degree of climate sensitivity among important pathogens, their response to climate change will be dependent on the nature of their association with climate drivers and impacts of other drivers
    • …
    corecore