67 research outputs found

    Integrated evidence reveals a new species in the ancient blue coral genus Heliopora (Octocorallia)

    Get PDF
    Maintaining the accretion potential and three dimensional structure of coral reefs is a priority but reef-building scleractinian corals are highly threatened and retreating. Hence future reefs are predicted to be dominated by non-constructional taxa. Since the Late Triassic however, other non-scleractinian anthozoans such as Heliopora have contributed to tropical and subtropical reef-building. Heliopora is an ancient and highly conserved reef building octocoral genus within the monospecific Family Helioporidae, represented by a single extant species – H. coerulea, Pallas, 1766. Here we show integrated morphological, genomic and reproductive evidence to substantiate the existence of a second species within the genus Heliopora. Importantly, some individuals of the new species herein described as Heliopora hiberniana sp. nov. feature a white skeleton indicating that the most diagnostic and conserved Heliopora character (the blue skeleton) can be displaced. The new species is currently known only from offshore areas in north Western Australia, which is a part of the world where coral bleaching events have severely impacted the scleractinian community over the last two decades. Field observations indicate individuals of both H. coerulea and H. hiberniana sp. nov. were intact after the 2016 Scott Reef thermal stress event, and we discuss the possibility that bleaching resistant non-scleractinian reef builders such as Heliopora could provide new ecological opportunities for the reconfiguration of future reefs by filling empty niches and functional roles left open by the regression of scleractinian corals

    Novel Approach for Improving Papaya Fruit Storage with Carnauba Wax Nanoemulsion in Combination with Syzigium aromaticum and Mentha spicata Essential Oils.

    Get PDF
    Application of hydrophobic coatings, such as carnauba wax nanoemulsions, combined with natural antimicrobials, has been demonstrated to be an effective solution in extending the shelf life of fruits. The present study evaluated the effectiveness of carnauba wax nanoemulsion (CWN) coatings containing free or encapsulated with ?-cyclodextrin (?-CD) essential oils of Syzigium aromaticum (CEO) and Mentha spicata (MEO) for the post-harvest conservation of papaya fruit. The chemical composition of the essential oils (EOs) was analyzed using GC-MS. Subsequently, coatings incorporating free and encapsulated EOs were prepared and applied to papaya fruit. Fruit was evaluated for post-harvest quality parameters during 15 days of storage. Clove essential oil presented as main compounds eugenol (89.73%), spearmint and carvone (68.88%), and limonene (20.34%). The observed reduction in weight loss in coated fruit can be attributed to the formation of a physical barrier provided by the coating. Compared to the control group, which experienced the highest weight loss of 24.85%, fruit coated with CWN and CWN-MEO:?-CD exhibited significantly lower weight loss percentages of only 5.78% and 7.5%, respectively. Compared to the control group, which exhibited a release of ethylene at a rate of 1.3 µg kg?1 h ?1, fruit coated with CWN, CWN-MEO:?-CD, and CWN-MEO coatings demonstrated a lower ethylene release rate at 0.7 µg kg?1 h ?1. Although the physical-chemical properties of papayas, including pH, Brix, titratable acidity, color, and texture, remained largely unchanged during storage with the coatings, analysis of incidence and severity of papaya post-harvest deterioration revealed that coatings containing essential oils effectively acted as antifungals in the fruit. Microscopy images showed that CWN and CWN-MEO:?-CD coatings are more uniform compared to the others. The edible coatings, especially CWN and CWN-MEO: ?-CD, can act as antimicrobial coatings on papaya fruit, increasing their conservation during post-harvest storag

    Adult Neurogenesis Transiently Generates Oxidative Stress

    Get PDF
    An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer’s disease, schizophrenia and Parkinson’s disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS) remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG). These regions contain populations of quiescent neural stem cells (NSCs) that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ) of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis

    Collaborative Virtual Screening Identifies a 2-Aryl-4-aminoquinazoline Series with Efficacy in an In Vivo Model of Trypanosoma cruzi Infection

    Get PDF
    Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments
    • …
    corecore