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Abstract: Application of hydrophobic coatings, such as carnauba wax nanoemulsions, combined
with natural antimicrobials, has been demonstrated to be an effective solution in extending the
shelf life of fruits. The present study evaluated the effectiveness of carnauba wax nanoemulsion
(CWN) coatings containing free or encapsulated with β-cyclodextrin (β-CD) essential oils of Syzigium
aromaticum (CEO) and Mentha spicata (MEO) for the post-harvest conservation of papaya fruit. The
chemical composition of the essential oils (EOs) was analyzed using GC-MS. Subsequently, coatings
incorporating free and encapsulated EOs were prepared and applied to papaya fruit. Fruit was
evaluated for post-harvest quality parameters during 15 days of storage. Clove essential oil presented
as main compounds eugenol (89.73%), spearmint and carvone (68.88%), and limonene (20.34%). The
observed reduction in weight loss in coated fruit can be attributed to the formation of a physical
barrier provided by the coating. Compared to the control group, which experienced the highest
weight loss of 24.85%, fruit coated with CWN and CWN-MEO:β-CD exhibited significantly lower
weight loss percentages of only 5.78% and 7.5%, respectively. Compared to the control group, which
exhibited a release of ethylene at a rate of 1.3 µg kg−1 h−1, fruit coated with CWN, CWN-MEO:β-CD,
and CWN-MEO coatings demonstrated a lower ethylene release rate at 0.7 µg kg−1 h−1. Although
the physical-chemical properties of papayas, including pH, Brix, titratable acidity, color, and texture,
remained largely unchanged during storage with the coatings, analysis of incidence and severity of
papaya post-harvest deterioration revealed that coatings containing essential oils effectively acted as
antifungals in the fruit. Microscopy images showed that CWN and CWN-MEO:β-CD coatings are
more uniform compared to the others. The edible coatings, especially CWN and CWN-MEO: β-CD,
can act as antimicrobial coatings on papaya fruit, increasing their conservation during post-harvest
storage.

Keywords: natural antifungal compounds; post-harvest; preservative; hydrophobic coatings

1. Introduction

Currently there is a higher demand for healthy foods without synthetic preservatives
by consumers [1]. Furthermore, foods rich in vitamins such as fruit and vegetables are
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highly perishable and susceptible to microbial deterioration [2–4]. Natural antimicrobial
coatings have proven to be an excellent alternative to increase food shelf life [5,6].

Edible coatings based on lipids such as waxes and oils prevent the diffusion of water
vapor and decrease the respiration rate because of their hydrophobic character [7,8]. The
high rates of water loss and respiration in fruit lead to significant decreases in firmness,
crispness, and weight resulting from biochemical changes that accelerate the process of
deterioration [9,10].

Carnauba wax is extracted from the Brazilian palm tree Copernicia prunifera and is
recognized as generally recognized as safe (GRAS) by the FDA, and its use is authorized by
Anvisa, FAO-Food and Agriculture Organization of the United Nations, and the European
Union [7,11,12].

Carnauba wax hydrophobicity is due to the high content of fatty alcohols and long-
chain alkanes present in its structure [13], preventing water loss and also being described
with antifungal action [14]. Nanoemulsions, with particle diameters ranging from 10 to
100 nm, possess higher clarity and translucency compared to conventional emulsions as
their average size is smaller than the visible light wavelength (r << λ) [15,16]. Moreover,
decreasing the particle diameter offers a promising strategy for generating more thermody-
namically stable emulsions [17]. Previous studies have demonstrated that carnauba wax
nanoemulsion has great potential as a fruit coating material, capable of prolonging their
shelf life and imparting shine [7,12,18].

In order to impart antimicrobial properties to coatings, natural antimicrobial agents
such as essential oils have been incorporated [12]. Essential oils have also been considered
GRAS substances by the FDA since 2008 [19]. In addition to being hydrophobic, essential
oils have antimicrobial activity [20,21] which may vary depending on the composition of
the oil and species of microorganisms [22].

Syzigium aromaticum EO’s main compound is eugenol, showing antimicrobial, antiviral
and antioxidant activity [23,24]. On the other hand, for Mentha spicata, carvone is the main
one, which is also an antioxidant, and due to this bioactivity, it increased shelf life of fresh
meats [25]. The antimicrobial activity of carvone was proven in the study by [26] with the
inhibition of the growth of the fungus Colletotrichum gloeosporioides in papayas and with
antifungal action against Botrytis cinerea in plums [27].

Natural antimicrobials such as essential oils can be added directly to foods, acting as
biopreservatives [28–30]. However, the effectiveness of these bioactive compounds can be
impaired by their high volatility and they are prone to degradation caused by exposure
to light, high temperatures, and the presence of oxygen [22,31]. In addition, essential oils
have low solubility in water and a very intense aroma that can interfere with the sensory
attributes of the food to which they are applied [32,33]. Encapsulation of essential oils
offers potential solutions to overcome several challenges, including enhanced stability and
protection, better control over compound release, reduced intensity of flavors and odors,
prolonged shelf life, and improved bioavailability and palatability of the encapsulated
materials [34].

Several studies have investigated the antibacterial properties of green mint nanoemul-
sions [35], while others have explored the antifungal potential of essential oil nanoemulsions
containing thymol and were incorporated into quinoa and chitosan films [36]. However,
there is a scarcity of research focused on nanoemulsions containing encapsulated clove and
mint oils despite their notable antifungal activity and potential to provide a safer and more
natural alternative to conventional antifungal agents.

The primary objective of this study was to assess the effectiveness of edible coat-
ings composed of nanoemulsions containing carnauba wax, S. aromaticum, and M. spicata
essential oils in preserving papayas. A post-harvest quality evaluation was conducted
to determine the impact of free and encapsulated essential oils in the coatings on the
retardation of fruit ripening and deterioration.
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2. Materials and Methods
2.1. Materials

A sample of Carnauba wax type I with 99% purity and CAS No.: 8015-86-9 was
obtained from Pontes Indústria de Cera in Fortaleza, CE, Brazil. MEO and CEO were
acquired from Laszlo Aromaterapia in Belo Horizonte, MG, Brazil. Papaya fruit of the
cultivar THB from the solo group were transported from a commercial farm in Bahia State
to the postharvest laboratory at Embrapa Instrumentação in São Carlos, SP, where they
were sanitized using a specialized fruit detergent and chlorine dioxide. Only papayas that
lacked standard defects, met size requirements, and were at stage 1 of maturation (with
less than 15% of their skin surface covered in yellow) were selected for the study [37].

2.2. Essential Oil Composition

A qualitative analysis of essential oils (EOs) was conducted via gas chromatography
using a Shimadzu (GC-2010 Plus, Kyoto, Japan) coupled with a quadrupole mass spectrom-
eter (GC-MS). A non-polar DB-5MS capillary column (30 m × 0.25 mm, i.d. × 0.25 µm)
was used for gas chromatography analyses with helium as the carrier gas at a flow rate of
1 mL/min. Essential oil samples were diluted in dichloromethane (10% v/v) and injected
(1 µL) in a split mode (1:50). The chromatographic conditions were as follows: injector
temperature: 220 ◦C, oven temperature: 60 to 240 ◦C at 3 ◦C/min; interface: 240 ◦C; ion
source: +70 eV, m/z: 35–350. The linear temperature programmed retention index (RI) was
calculated using an alkane solution (C7–C30). Identification of analytes was conducted by
comparing the RI and mass spectra obtained from the sample with mass spectra and RI of
the literature, with at least 85% similarity for the mass spectra and maximum variation in
RI of ± 10. The identification of analytes was confirmed by co-injection of authentic stan-
dards whenever available. Semi-quantitative analysis of essential oils (% relative area) was
performed using the flame ionization detector (GC-FID) in the same gas chromatography
system. All qualitative and semi-quantitative analyses were performed in triplicate.

2.3. Encapsulation of Essential Oils with β-Cyclodextrin

MEO:β-CD and CEO:β-CD microcapsules were prepared by the co-precipitation
method as reported [38]. The MEO:β-CD and CEO:β-CD ratios of 10:90 and 20:80 (% w/w),
respectively, were selected as these ratios provides the maximum inclusion of MEO or CEO
in β-CD according to previous tests. Obtained MEO:β-CD and CEO:β-CD microcapsules
were stored in a desiccator at 25 ◦C until use.

2.4. Edible Coating Preparation

A carnauba wax nanoemulsion (CWN) was prepared using an oil phase and water
phase via a high-pressure process with ammonia in a morpholine-free method adapted
for this study [39] in a high-pressure process. The diameter size of the CWN obtained
was 44.1 ± 7.6 nm with a narrow polydispersion index of 0.28 and a zeta potential of
−43.8 mV as measured by the Zetasizer Nano ZS (Malvern Instruments Inc., Westborough,
MA, USA) [40]. The incorporation of MEO and CEO free and microencapsulated, as
antimicrobial agents, was done by mixing the 1.0% concentration with CWN in a high-
speed mixer (UltraTurrax T25, IKA Werke GmbH & Co, Staufen, Alemanha) for 5 min at
5.000 rpm.

The coatings were applied to the fruit, which were randomly divided into 6 treatment
groups as follows: CWN (9% solid phase in suspension), CWN (9%) with MEO (1%), CWN
(9%) with CEO (1%), CWN (9%) with MEO:β-CD (1%), CWN (9%) with CEO:β-CD (1%),
and non-treated fruit as a control. The coatings were applied manually by pouring 1 mL of
the coating solution onto latex-gloved hands and then manually spreading it on sanitized
papayas. For non-destructive analyses, five papayas were used per treatment, and for
destructive analyses, ten papayas were used. The fruit was stored for 15 days at 16 ◦C and
a relative humidity of 70%. The quality attributes of the papayas were evaluated at the
beginning of the experiment (0 days) and after 5, 10, and 15 days of storage.
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2.5. Physicochemical Parameters of Papayas

The fruit weight loss was determined using the [41] standard method by measuring
the fruit weight on day 0 (start of the experiment) and on days 5, 10, and 15 of storage.
The percentage difference between the initial and final weight on each day was used to
calculate the weight loss.

The soluble solids (SS) content was measured with an Atago RX-5000cx digital refrac-
tometer (Tokyo, Japan) and expressed as Brix following the [41] standard method. The pH
of the samples was assessed using a PHS-3B digital pH meter following the same standard
method. The titratable acidity was determined using 0.1 N NaOH and phenolphthalein as
an indicator, and the results were expressed as g of citric acid per 100 g of fruit.

The color measurements were performed on the external surface of the fruit (on the
peel) with a Konica Minolta CR-400 colorimeter (Konica Minolta, Osaka, Japan) equipped
with a C illuminant using the CIELAB scale. Hue angle (h◦), chroma (C∗), and total color
difference (∆E) were calculated with Equations (1)–(3), respectively.

h
◦
= tan−1

(
b∗

a∗

)
(1)

C∗ = ((a∗)2 + (b∗)2)
1/2

(2)

∆E∗ =
√
(Lt∗ − Lt0∗)

2 + (at∗ − at0∗)
2 + (bt∗ − bt0∗)

2 (3)

where subscripts t and 0 correspond to parameters evaluated at time t and at the beginning
of the study, respectively.

The firmness of the fruit was assessed using a digital TA.XTplus Texture Analyzer
(Stable Micro Systems Ltd., Godalming, UK) equipped with a 6 mm diameter probe,
15 mm/s velocity, 5 mm penetration distance, and 12 mm2 contact area with the peel
removed. The results were reported in Newtons (N) and the mean value was calculated
based on three penetrations in the distal region of each fruit. All analyses were performed
in triplicate and the data were presented as mean ± standard deviation.

2.6. Respiration Rate and Ethylene of Papayas

The respiration rate was determined following the method described by [42], using
a respirometer (model 6600, Illinois Instrument, Inc., Johnsburg, IL, USA). Two papayas
were placed in 2000 mL glass containers with a silicone septum in the lids, which were
hermetically sealed. The concentrations of O2 and CO2 were measured at each time
point by suctioning air samples from the containers using a paramagnetic sensor and an
infrared sensor, respectively. Ethylene production was determined according to the method
described by [18]. Two papayas of the same treatment were packed in pairs in hermetic
glass jars with screw caps and held for 2 h. At the end of this period, 1 mL of the headspace
was collected through a rubber septum located on the cap. This volume was injected with
Varian Gas Chromatograph model CP 3800, with TCD/FID detectors, in order to detect
the peaks corresponding to ethylene. Results were expressed in µg·kg−1·h−1. All analyses
were carried out in triplicate, and the data were calculated as means ± standard deviations.

2.7. Scanning Electron Microscopy

Images of papaya peels with or without coating were determined according to [43]
by emission gun scanning electron microscopy (SEM-SEM JEOL JSM-6701F, Tokyo, Japan).
Surface and fracture micrographs of the fruit peel were obtained. Both were first dried and
then coated with gold. The accelerating voltage used for microscopy was 10 kV.

2.8. Decay Percentage and Severity on Papayas

The presence or absence of mold growth in papayas during storage was evaluated
visually, and any visible spoilage was considered as decay. The percentage of decay was
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determined based on the number of decayed papayas per treatment, with each treatment
having ten papayas. The severity of the disease in the fruit was assessed using a six-point
scale (0 = no symptoms; 1 = 1%–20% affected area; 2 = 21%–40%; 3 = 41%–60%; 4 = 61%–80%;
and 5 = 81%–100%) and was used to evaluate the antifungal activity of the treatments [12].

2.9. Statistical Analysis

Data were described using means and standard deviations and comparison of means
was performed by parametric analysis of variance and Duncan’s multiple comparisons
test or non-parametric ANOVA and Kruskal–Wallis multiple comparisons test, depending
on the homogeneity condition of variance, verified by the Bartlett test, or the level of
measurement of the response variable. The significance level was set at 5% and the software
used for the analyses was R version 4.2.2.

3. Results and Discussion
3.1. Essential Oil Composition

The major compounds of clove (Syzigium aromaticum) and spearmint (Mentha spicata)
essential oils obtained from chromatograms are shown in Table 1. Clove essential oil
presented as main compounds eugenol (89.73%), spearmint and carvone (68.88%), and
limonene (20.34%). These results are close to those found by [44], who obtained eugenol
values (70.58%), and [45], who found 96.33% eugenol for clove oil. Reference [46] obtained
62.9% carvone and 8.5% limonene for spearmint oil. The variation in chemical composition
in the comparison of the mentioned works may be due to factors such as geographic origin,
environmental conditions, age and part of the plant, seasonal and climatic conditions,
genetic factors, and even plant nutrition [47,48].

Table 1. Composition of essential oils.

Compound Syzigium aromaticum (% Area) Mentha spicata (% Area)

α-Pinene - 0.69
Sabinene - 0.32
β-Pinene - 0.76
Myrcene - 0.95
3-Octanol - 0.25
p-Cymene - 0.23
Limonene - 20.34
1,8-Cineol - 1.10
γ-Terpinene - 0.13
Menthone - 0.50

cis-Sabinene hydrate - 0.17
Menthol - 0.15

Isomenthol - 1.06
(E)-dihydrocarvone - 1.40
cis-Dihydrocarvone - 0.15

trans-Carveol - 0.28
Carvone - 68.88

Piperitone - 0.18
Menthyl acetate - 0.39

Dihydrocarvyl acetate - 0.13
Eugenol 89.73 -

cis-Carvyl acetate - 0.11
β-bourbenene - 0.77
β-Gurjenene 7.59 -

Caryophyllene - 1.03
α-Humulene 2.10 -
γ-Selinene 0.20 -
δ-Cadinene 0.25 -

Caryophyllene oxide 0.13 -

Total 100 99.97

Eugenol, present in clove essential oil, is a phytochemical that confers antimicrobial
and antioxidant properties in addition to the characteristic flavor and odor of this oil [49–51].
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The antifungal efficacy of carvone present in spearmint essential oil has been proven in
other studies [52,53].

3.2. Physicochemical Parameters of Papayas

Based on the results presented in Figure 1, the control group exhibited the greatest
weight loss (24.85%) after 15 days of storage, which was significantly different from all
other treatments. In contrast, papayas treated with only carnauba wax nanoemulsion
demonstrated the lowest weight loss (5.78%), followed by CWN-MEO:β-CD, which exhib-
ited 7.5% weight loss. Comparison of the treatments containing essential oils revealed that
papayas treated with carnauba nanoemulsion containing MEO, either free or encapsulated,
exhibited lower weight loss, particularly during the first 10 days of storage, compared to
those treated with CEO.
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Fruit weight loss occurs through transpiration due to the respiration that takes place
in the stomata of the epidermis [54,55]. The main component of the coating, carnauba
wax, is highly hydrophobic; therefore, the coating acted as a barrier to gas exchange and
thus reduced the transpiration rate of the fruit [7,56]. Similar results were obtained in
cucumbers [57], apples [58], and papayas [12].

Ideal coatings should allow controlled gas exchange, avoiding the formation of anaer-
obic conditions and the accumulation of undesirable compounds, such as acetaldehydes
and other off-flavors [59]. Since the weight loss of all treatments involving carnauba wax
nanoemulsion with or without essential oils differed significantly from that of the control,
the findings suggest that the coatings created a physical barrier that reduced the extent of
fruit weight loss.

The results of pH, titratable acidity, and soluble solids analysis of papayas are pre-
sented in Table 2. The pH values of all treatments increased over time and were not
significantly different among them (Table 2). A delay in the fruit ripening process oc-
curs when there is a decrease in the use of some organic acids that are converted into
sugars [12,60].

The increase in TSS values is directly related to the ripening of the fruit; as time passes,
starch hydrolysis occurs and consequently the synthesis of sucrose and hexose in plant
tissues [28,61]. The increase in soluble solids content is also attributed to a reduction in the
water content of the fruit, resulting in a higher concentration of soluble solids [62,63].

Over time, the TA values of fruit tend to decrease as organic acids such as citric acid
are used up during respiration [64,65]. Even though there were no significant differences
in the pH, TA, and TSS values, the weight loss results indicate that the coating process
inhibited the fruit’s respiratory system.
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Table 3 shows the values of the color parameters L*, C∗, h◦, and ∆E*. The luminosity
values (L*) decreased over time for all treatments, indicating fruit ripening [66], with the
exception of the group with encapsulated spearmint essential oils (CWN-MEO:β-CD),
which showed higher values compared to the first day. The chroma (C∗) values of all
groups also decreased, especially after the 5th day of storage, due to oxidative phenomena
and the synthesis of papaya pigments such as carotene, lycopene, and anthocyanins during
storage [67]. At the end of 15 days, the h◦ values of all treatments also decreased; as papaya
matures, its color changes from greenish to yellowish due to chlorophyll degradation and
carotenoid biosynthesis [68]. However, the CWN-MEO:β-CD treatment showed a statistical
difference compared to the other treatments in relation to h◦ values. These changes in color
parameters led to an increase in the total color difference (∆E) of the fruits during storage,
highlighting differences in h◦ values compared to day 0 (Table 3). By the end of 15 days, the
fruits showed significantly equal ∆E values, indicating visible similarity among treatments.

During storage, fruit firmness decreased over time for all groups (as shown in Table 4).
On the last day of storage (15th day), CWN-CEO showed the lowest reduction in firmness,
while CWN-MEO showed the highest reduction (Table 4). The lowest firmness values
observed for CWN-MEO may be the result of the interaction of the components of this oil
with the cellular tissue of the fruit, causing structural changes that lead to softening and an
increased release of enzymes or substrates that favor this process [69,70]. Some essential
oils, depending on the concentration, can penetrate the cell tissue of the fruit and cause
structural changes, decreasing firmness [6]. A similar behavior was reported by [71] for
fresh-cut melons with alginate-based coatings that contained geraniol.
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Table 2. Titratable acidity (TA), soluble solid content (TSS), and pH of fruit over time.

Treatments pH TSS (%) TA (%)

Storage Time
(Days) 5 10 15 5 10 15 5 10 15

Control 5.35 ± 0.14 b 5.68 ± 0.10 b 6.05 ± 0.19 ab 10.02 ± 1.44 a 8.06 ± 1.45 b 8.97 ± 2.31 a 0.066 ± 0.013 bc 0.097 ± 0.090 a 0.055 ± 0.014 a

CWN 5.64 ± 0.05 a 6.00 ± 0.13 a 6.28 ± 0.23 a 8.59 ± 1.51 a 8.87 ± 1.19 ab 7.75 ± 1.32 a 0.065 ± 0.009 c 0.052 ± 0.007 a 0.059 ± 0.010 a

CWN-CEO:β-CD 5.48 ± 0.11 ab 5.69 ± 0.14 b 6.21 ± 0.14 ab 8.76 ± 0.76 a 9.43 ± 1.40 ab 9.27 ± 1.99 a 0.070 ± 0.010 bc 0.057 ± 0.005 a 0.051 ± 0.009 a

CWN-CEO 5.49 ± 0.08 ab 5.61 ± 0.21 b 6.09 ± 0.12 ab 8.80 ± 0.87 a 9.02 ± 0.67 ab 7.43 ± 1.20 a 0.085 ± 0.012 a 0.056 ± 0.005 a 0.050 ± 0.008 a

CWN-MEO:β-CD 5.45 ± 0.10 ab 5.54 ± 0.14 b 6.11 ± 0.10 ab 9.02 ± 0.70 a 8.67 ± 0.81 b 7.90 ± 1.11 a 0.081 ± 0.009 ab 0.051 ± 0.006 a 0.059 ± 0.006 a

CWN-MEO 5.46 ± 0.27 ab 5.72 ± 0.21 b 6.00 ± 0.24 b 9.84 ± 1.24 a 10.37 ± 1.17 a 8.25 ± 1.90 a 0.068 ± 0.004 bc 0.048 ± 0.011 a 0.056 ± 0.020 a

Means followed by different letters on the same column indicate significant differences between treatments (p < 0.05).

Table 3. Color parameters L*, C*, h◦, and ∆E of papayas stored for 15 days at 16 ◦C and 70% RH.

Treatments

Time (Days)

0 5 10 15

L* C∗ (h◦) L* C∗ (h◦) ∆E* L* C∗ (h◦) ∆E* L* C∗ (h◦) ∆E*

Control 54.85 ±
3.91 a

39.00 ±
2.13 a

102.92 ±
2.55 a

61.48 ±
5.77 a

49.53 ±
6.98 a

101.74 ±
9.47 a

13.73 ±
5.74 a

53.76 ±
6.93 a

27.00 ±
4.31 a

88.83 ±
11.20 a

16.60 ±
1.54 a

47.52 ±
10.88 b

22.55 ±
7.14 b

74.59 ±
12.82 a

24.31 ±
6.82 a

CWN 52.00 ±
3.39 b

37.43 ±
1.89 a

103.70 ±
2.34 a

49.37 ±
4.75 c

23.73 ±
3.05 b

102.44 ±
7.42 a

14.55 ±
3.05 a

52.53 ±
6.55 a

25.92 ±
3.06 a

96.70 ±
10.69 a

14.32 ±
2.41 a

50.84 ±
8.58 b

24.85 ±
4.75 b

85.66 ±
15.19 a

18.45 ±
3.33 a

CWN-
CEO:β-

CD

53.10 ±
3.40 ab

37.63 ±
2.04 a

104.08 ±
2.33 a

53.28 ±
7.65 bc

31.79 ±
11.88 b

103.79 ±
9.23 a

13.14 ±
6.30 a

54.43 ±
6.51 a

27.80 ±
3.47 a

92.87 ±
10.63 a

14.15 ±
2.78 a

49.83 ±
10.22 b

24.58 ±
4.24 b

80.35 ±
14.02 a

20.19 ±
3.78 a

CWN-
CEO

54.86 ±
4.94 a

38.45 ±
3.75 a

102.89 ±
2.97 a

61.49 ±
4.76 a

48.17 ±
5.11 a

103.86 ±
5.61 a

12.32 ±
5.16 a

56.55 ±
6.08 a

28.43 ±
3.84 a

87.93 ±
8.81 a

15.15 ±
2.54 a

52.44 ±
10.35 ab

26.21 ±
6.18 b

74.64 ±
10.14 a

21.59 ±
3.42 a

CWN-
MEO:β-

CD

53.63 ±
4.10 ab

37.11 ±
2.60 a

103.82 ±
2.66 a

53.96 ±
5.89 bc

26.25 ±
3.31 b

97.05 ±
30.40 ab

12.17 ±
1.27 a

58.54 ±
5.65 a

30.05 ±
3.48 a

86.57 ±
27.61 a

14.17 ±
3.51 a

58.01 ±
7.39 a

31.75 ±
4.56 a

71.07 ±
29.77 a

21.28 ±
3.73 a

CWN-
MEO

55.16 ±
4.21 a

39.71 ±
4.25 a

101.21 ±
4.05 b

54.38 ±
5.80 b

26.69 ±
3.84 b

94.43 ±
9.61 b

14.48 ±
2.01 a

57.84 ±
5.97 a

29.38 ±
4.21 a

87.37 ±
10.81 a

15.03 ±
2.49 a

50.84 ±
8.58 b

24.85 ±
4.75 b

85.66 ±
15.19 a

20.63 ±
5.07 a

Means followed by different letters on the same column indicate significant differences between treatments (p < 0.05).



Coatings 2023, 13, 847 9 of 16

Table 4. Firmness (N) of papaya during storage for 15 days at 16 ◦C and 70% RH.

Treatments Storage Time (Days)

5 10 15

Control 5.46 ± 2.22 a 5.52 ± 3.07 a 4.02 ± 3.07 ab

CWN 4.32 ± 3.02 a 3.68 ± 1.33 a 4.68 ± 2.20 ab

CWN-CEO:β-CD 5.53 ± 3.10 a 4.34 ± 0.92 a 3.87 ± 2.30 ab

CWN-CEO 6.59 ± 3.79 a 3.83 ± 1.04 a 6.60 ± 2.41 a

CWN-MEO:β-CD 5.65 ± 3.35 a 7.12 ± 2.10 a 4.71 ± 1.70 ab

CWN-MEO 5.15 ± 2.98 a 3.88 ± 0.32 a 2.82 ± 0.58 b

Means followed by different letters on the same column indicate significant differences between treatments
(p < 0.05).

The effectiveness of the carnauba wax nanoemulsion coating without and with essen-
tial oils in ethylene release, CO2 production rate, and O2 consumption rate of papayas can
be seen in Figure 2. Applying coatings to papayas during storage resulted in a reduction
in the ethylene production of the fruit, ultimately leading to delayed maturation [72]. No
significant difference in ethylene levels during storage was observed among the different
coatings. Ethylene is a hormone related to fruit ripening, and high levels indicate fast
ripening [73]. Similar behavior was observed by [74] for plums coated with hydroxypropy-
lmethylcellulose and two different essential oils (oregano essential oil (OEO) and bergamot
essential oil (BEO)), fruit coated with H-OEO showed no significant difference in the pro-
duction of ethylene compared to fruit coated with H-BEO, and both oils were effective in
reducing and delaying ethylene production.

The levels of CO2 and O2 were also measured during storage and are shown in Figure 2.
The control group showed a significant increase in CO2 production (Figure 2B) and O2
consumption (Figure 2C), indicating high metabolism and accelerated ripening, which
ultimately led to a shorter shelf life. Regarding the coating treatments, it is worth noting
that fruit coated with CWN exhibited lower CO2 production after 5, 10, and 15 days of
storage, as well as lower O2 consumption.

The balance between those two gases enhances post-harvest life. High levels of CO2
in the fruit restrict the Krebs cycle and low levels of O2 inhibit the activities of respiratory
enzymes [75]. Association with OEs did not show a significant decrease in CO2 or in
O2 at 5 and 10 days of storage. It can be seen that the CWN-CEO coating presented O2
concentrations close to that of the control (Figure 2C) as coatings can present different
degrees of permeability due to the formation of irregular structures and thicknesses during
film consolidation [41]. However, at 15 days of storage, the treatments wit OE encapsulated
demonstrated a reduction on O2 consumption when compared to control, a possible
indication of reduction in metabolism.

3.3. Scanning Electron Microscopy

For a better understanding of the deposition of the coatings on the fruit, microscopic
analyses were carried out as shown in Figure 3 (micrographs of the surface of the peels and
micrographs of the fractures of the peels). Microscopic analysis showed that the CWN and
CWN-MEO:β-CD coatings were more uniformly applied over the fruit surface compared
to the other treatments, which exhibited more cleavage or cracking. This result is consistent
with the findings for the CWN coating, which showed the lowest weight loss (Figure 1) and
the highest inhibition of ethylene biosynthesis and gas exchange (CO2 and O2) (Figure 2)
in papayas, followed by the CWN-MEO:β-CD coating.
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Figure 3. Micrographs of the surface (magnification 50× and scale bar 500 µm) and fractures
(magnification 2000× and scale bar 10 µm) of the peels of papaya Control (A,B), CWN (C,D) CWN-
CEO:β-CD (E,F) CWN-CEO (G,H) CWN-MEO:β-CD (I,J) and CWN-MEO (K,L).

The greater the chemical homogeneity of the nanometric coatings, the greater the uni-
formity and adhesion to the fruit [76]. CWN presents a regular structure due to the stability
of the nanoemulsion (with the diameter size parameters of 44, 1 nm, PDI 0.28, and zeta
potential of −43.8 mV) [38]. The uniformity of CWN-MEO:β-CD is due to encapsulation
avoiding aggregation and flocculation of EO droplets ensuring a better distribution of EO in
coatings [77]. However, the chemical composition of the EO determines its polarity and vis-
cosity; thus, the type of EO can affect the average droplet size of the nanoemulsion [78], so
CWN-CEO:β-CD may not have shown as much uniformity compared to CWN-MEO:β-CD
(Figure 3).

3.4. Decay Percentage and Severity on Papayas

Coatings reduced postharvest disease incidence (Figure 4A) and severity (Figure 4B–D)
in papayas when compared to control fruit. The CWN-MEO:β-CD coating showed the lowest
incidence of disease compared to the other treatments at the end of 15 days. Encapsulated
essential oils show greater stability in vivo tests due to the slow release of active compounds
from the EO, reducing fruit rot in the long term. This behavior was also described by [79], who
developed polylactic acid (PLA) nanocapsules with lemongrass EO and evaluated in vivo
against the postharvest activity of C. gloeosporioides in apples.

Coatings with CWN-CEO and CWN-MEO essential oils had the lowest rot severities
with 100% and 90% scores of 1%–20% affected area, respectively, at the end of the storage
period. S. aromaticum and M. spicata essential oils added to CWN acted as antifungals.
The antifungal mechanism of essential oils is through depolarization of the mitochondrial
membrane and consequently greater cell permeability and imbalance in ion transport and
thus cell death by apoptosis [80]. The antifungal action of the oils delayed fruit rot.
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Figure 4. Fruit incidence (A) and severity of papaya post-harvest deterioration after 5 days (B),
10 days (C), and 15 days (D) of storage at 16 ◦C. For each storage period, different letters indicate
significant differences between treatments (p < 0.05).

4. Conclusions

CWN coatings with or without essential oils reduced weight loss and delayed fruit
rot due to physical barrier on gas exchange and presence of antifungal compounds. The
microscopy images indicated that the CWN and CWN-MEO:β-CD coatings exhibited
more uniformity and improved stability resulting from encapsulation in spearmint oil.
The coating based on CWN-MEO was less effective in reducing fruit firmness loss due to
negative interactions between MEO components and fruit tissue. The CWN-CEO-based
coating was also inefficient in reducing the respiration rate of the fruit. Additionally, this
coating did not show good uniformity when applied to papaya fruit, as observed in SEM
images. This lack of uniformity negatively impacted gas exchange reduction, resulting in
low coating efficiency. Coatings with carnauba nanoemulsion and essential oils inhibited
the growth of fungi evaluated by the incidence and severity in the fruit. Therefore, CWN
coatings with essential oils delayed fruit rot and thus can be a good alternative for natural
antifungals and fruit preservation.
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