1,489 research outputs found

    Lattice QCD-2+1

    Full text link
    We consider a 2+1-dimensional SU(N) lattice gauge theory in an axial gauge with the link field U in the 1-direction set to one. The term in the Hamiltonian containing the square of the electric field in the 1-direction is non-local. Despite this non-locality, we show that weak-coupling perturbation theory in this term gives a finite vacuum-energy density to second order, and suggest that this property holds to all orders. Heavy quarks are confined, the spectrum is gapped, and the space-like Wilson loop has area decay.Comment: Still Latex, 18 pages, no figures, with some further typographical errors corrected. Version to appear in Phys. Rev.

    Ultra-short solitons and kinetic effects in nonlinear metamaterials

    Full text link
    We present a stability analysis of a modified nonlinear Schroedinger equation describing the propagation of ultra-short pulses in negative refractive index media. Moreover, using methods of quantum statistics, we derive a kinetic equation for the pulses, making it possible to analyze and describe partial coherence in metamaterials. It is shown that a novel short pulse soliton, which is found analytically, can propagate in the medium.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Magnetic monopole clusters, and monopole dominance after smoothing in the maximally Abelian gauge of SU(2)

    Get PDF
    In the maximally Abelian gauge of SU(2), the clusters of monopole current are found to divide into two distinct classes. The largest cluster permeates the lattice, has a density that scales and produces the string tension. The remaining clusters possess an approximate 1/l^3 number density distribution (l is the cluster length), their radii vary as \sqrt l and their total current density does not scale. Their contribution to the string tension is compatible with being exactly zero. Their number density can be thought of as arising from an underlying scale invariant distribution. This suggests that they are not related to instantons. We also observe that when we locally smoothen the SU(2) fields by cooling, the string tension due to monopoles becomes much smaller than the SU(2) string tension. This dramatic loss of Abelian/monopole dominance occurs even after just one cooling step.Comment: Talk presented at LATTICE97(topology). LaTeX, with 4 PS figure

    Nodes, Monopoles and Confinement in 2+1-Dimensional Gauge Theories

    Get PDF
    In the presence of Chern-Simons interactions the wave functionals of physical states in 2+1-dimensional gauge theories vanish at anumber of nodal points. We show that those nodes are located at some classical configurations which carry a non-trivial magnetic charge. In abelian gauge theories this fact explains why magnetic monopoles are suppressed by Chern-Simons interactions. In non-abelian theories it suggests a relevant role for nodal gauge field configurations in the confinement mechanism of Yang-Mills theories. We show that the vacuum nodes correspond to the chiral gauge orbits of reducible gauge fields with non-trivial magnetic monopole components.Comment: 11 pages, revtex, no figures

    Conformal Field Theory for the Superstring in a Ramond-Ramond Plane Wave Background

    Get PDF
    A quantizable worldsheet action is constructed for the superstring in a supersymmetric plane wave background with Ramond-Ramond flux. The action is manifestly invariant under all isometries of the background and is an exact worldsheet conformal field theory.Comment: 13 pages harvma

    Holonomy Transformation in the FRW Metric

    Get PDF
    In this work we investigate loop variables in Friedman-Robertson-Walker spacetime. We analyze the parallel transport of vectors and spinors in several paths in this spacetime in order to classify its global properties. The band holonomy invariance is analysed in this background.Comment: 8 page

    Monopole Condensation in full QCD using the Schroedinger Functional

    Get PDF
    We use a lattice thermal partition functional to study Abelian monopole condensation in full QCD with Nf=2N_f=2 staggered fermions. We present preliminary results on 163×416^3\times4 and 323×432^3\times4 lattices.Comment: Lattice2002(topology). 3 pages, 3 figure

    Electrons as quasi-bosons in magnetic white dwarfs

    Get PDF
    A white dwarf star achieves its equilibrium from the balancing of the gravitational compression against the Fermi degeneracy pressure of the electron gas. In field theory there are examples (e.g. the monopole-charge system) where a strong magnetic field can transform a boson into a fermion or a fermion into a boson. In some condensed matter systems (e.g. fractional quantum Hall systems) a strong magnetic field can transform electrons into effective fermions, or effective anyons. Based on these examples we investigate the possibility that the strong magnetic fields of some white dwarfs may transform some fraction of the electrons into effective bosons. This could have consequences for the structure of highly magnetized white dwarfs. It would alter the mass-radius relationship, and in certain instances one could envision a scenario where a white dwarf below the Chandrasekhar limit could nevertheless collapse into a neutron star due to a weakening of the electron degeneracy pressure. In addition the transformation of electrons into effective bosons could result in the electrons Bose condensing, which could speed up the cooling rate of white dwarfs.Comment: 10 pages. To be published IJMP

    Random percolation as a gauge theory

    Get PDF
    Three-dimensional bond or site percolation theory on a lattice can be interpreted as a gauge theory in which the Wilson loops are viewed as counters of topological linking with random clusters. Beyond the percolation threshold large Wilson loops decay with an area law and show the universal shape effects due to flux tube quantum fluctuations like in ordinary confining gauge theories. Wilson loop correlators define a non-trivial spectrum of physical states of increasing mass and spin, like the glueballs of ordinary gauge theory. The crumbling of the percolating cluster when the length of one periodic direction decreases below a critical threshold accounts for the finite temperature deconfinement, which belongs to 2-D percolation universality class.Comment: 20 pages, 14 figure

    Approximate gauge symmetry of composite vector bosons

    Get PDF
    It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector boson made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.Comment: Correction of typos. The published versio
    • 

    corecore