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Abstract

Three-dimensional bond or site percolation theory on a lattice can be interpreted as a gau
ory in which the Wilson loops are viewed as counters of topological linking with random clu
Beyond the percolation threshold large Wilson loops decay with an area law and show the un
shape effects due to flux tube quantum fluctuations like in ordinary confining gauge theories.
loop correlators define a non-trivial spectrum of physical states of increasing mass and spin,
glueballs of ordinary gauge theory. The crumbling of the percolating cluster when the length
periodic direction decreases below a critical threshold accounts for the finite temperature dec
ment, which belongs to 2D percolation universality class.
 2005 Elsevier B.V. All rights reserved.

PACS: 11.15.Ha; 05.50.+q; 05.70.Jk; 05.70.Lq

1. Introduction

Percolation is a purely geometrical phenomenon which in many respects rese
a continuous thermal phase transition. The theoretical description of the perco
processes is conventionally given in terms of the cluster sizes[1], and most of the uni
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versal scalings deal with size distribution of clusters. The point of view which is tak
this paper is different. We focus on topological entanglement of random clusters a
it to describe how percolation theory in three dimensions can be viewed as a full-fl
gauge theory.

Though the gauge group of the theory in question is trivial (it is theq → 1 limit of the
symmetric groupSq ), the occurrence of a confining phase yields some new hints o
mechanisms of quark confinement of more general theories.

Transcribing percolation in terms of gauge theory has also some important c
quences for percolation itself. In three-dimensional systems there are almost no
results whatsoever, but in gauge theories we have a number of well-verified conje
that can be translated into the language of percolation. In this way we shall, for ins
relate certain linking properties of the closed paths within a percolating cluster to th
versal quantum fluctuations of the chromoelectric flux tube joining a quark pair in
confining phase of whatever gauge theory.

An unsuspected property of random percolation which emerges from this new view
is that one can build up new classes of correlators which define, through their exp
tial decay, a variety of different correlation lengthsξ1 > ξ2 > · · · . Their inverse 1/ξ1 <

1/ξ2 < · · · form, in the gauge theory language, the mass spectrum of the model,
turns out to be composed by a (possibly infinite) tower of physical states of incre
mass and spin—the glue-balls of the corresponding gauge theory. Their mass rati
the percolation point define a totally new set of critical amplitude ratios belonging t
universality class of 3D random percolation.

Another piece of useful information comes from considering percolation in a slab w
is infinite in two dimensions, but of finite length� and periodic in the remaining direc
tion. The associated gauge model describes a system at finite temperatureT = 1/�. This
transition is accurately described by the universality class of two-dimensional rando
colation, but the corresponding deconfining temperatureTc may be used to define a ne
critical amplitude of the three-dimensional system.

We test the universality of this new set of critical amplitudes by performing large
numerical experiments in three different kinds of lattices: the simple cubic (SC) with
or site percolation and the body centered cubic lattice (BCC) with bond percolation
numerical implementation of these systems is straightforward in comparison with
lations of ordinary gauge models: no Markovian process is needed and there are
thermalization problems nor critical slowing down. Preliminary results have been
sented in[2].

The organization of the paper is as follows. In Section2 we define a new class of obser
ables of the percolation theory to be identified with the Wilson loops of the correspo
gauge theory. In Section3 we describe a method to study the linking properties of the
dom clusters which is at the heart of our analysis. Section4 is devoted to the comparison
confinement mechanisms and in Section5 we extract the string tension (the gauge the
analogue of the surface tension) and show the relevance of the universal terms gene
quantum fluctuations of an underlying effective string. In Section6 we study the plaquett
correlators in order to find the low-lying states of the spectrum. Section7 is devoted to the

transcription of the percolation on a slab into a gauge system at finite temperature and Sec-
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Finally in Section9 we draw some concluding remarks.

2. Observables

The most basic observables of any gauge theory are the Wilson loops. These are
tors which assign to each pair(C,γ ) formed by an arbitrary gauge configurationC and any
closed pathγ of the space a suitably defined complex numberWγ (C). Their importance
stems from the fact that they serve as order parameters for confinement. The co
phase is expected to show up in anarea law for the vacuum expectation value of large W
son loops. The area law means that ifγ is scaled up, keeping its shape fixed and increa
its encircled minimal areaA, then〈Wγ 〉 vanishes exponentially withA:

(2.1)〈Wγ 〉 ∝ e−σA,

where the area coefficientσ , called string tension, is the fundamental quantity of whate
confining gauge theory.

One can define similar observables in the framework of random percolation. In thi
text the configurations are generated simply by occupying each site or bond on an i
empty 3D latticeΛ with independent probabilityp. Two sites are considered neighbou
if they share one bond. The resulting configuration is a graphG drawn on the lattice, com
posed by the occupied bonds (bond percolation problem) or by the bonds joining oc
neighbour sites (site percolation problem). The connected components ofG are theclus-
ters of the configuration. We choose asγ ’s the closed paths of the dual latticẽΛ. The value
Wγ (G) measures the topological entanglement betweenγ andG. More precisely we apply
the following rule

(1) Wγ (G) = 1 if no cluster ofG is linked toγ ;
(2) Wγ (G) = 0 otherwise.

This definition did not come out of the blue. Starting from the Fortuin–Kasteleyn
dom cluster representation of the 3D Ising model[3] combined with the Kramers–Wanni
duality [4], it is easy to express the Wilson loopWγ belonging to aZ2 gauge system in
terms of the winding numbers modulo 2 of the Fortuin–Kasteleyn clusters acrossγ
loop [5]. Generalizing this result toq-state Potts model one is led to the above rule in
case of non-integerq. A recently developed algorithm could even allow to evaluate
plicitly these quantities for realq > 0 [6]. We extend the above recipe to any percolat
system, owing to the fact that bond percolation can be viewed as theq → 1 limit of the
q-state Potts model.

The removal of an occupied bondb from a graphG can lead to two different issues.
the numberc(G) of clusters is kept invariant, thenb is necessarily a step of a closed pa
(or loop) of G, whereas ifc(G) increases by one,b cannot lie in a loop and is called
bridge (seeFig. 1). Clearly only the former bonds contribute toWγ (G). If two graphsG

andG′ have the same loops and differ only in the bridges, then they yield the same value
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Fig. 1. The closed thick linesγ andγ ′ represent Wilson loops. The dashed lines are bridges of the cluste
other solid lines are closed paths of the cluster.γ is linked to the cluster, whileγ ′ is unlinked.

of Wγ for anyγ . In more technical terms we may write the double implication

(2.2)G ∪ G′ − G ∩ G′ is a tree ⇔ Wγ (G) = Wγ (G′), ∀γ ⊂ Λ̃,

hence the transformationG → G′ has some resemblance to a gauge transformation.
Note that the connected correlator among occupied bonds is exactly zero by co

tion, but this is not an invariant quantity under the aboveG → G′ transformation. Cutting
all bridges ofG yields the maximal invariant subsetBG of G, made by bonds belongin
to some loop. Of course we haveWγ (G) = Wγ (BG) for anyγ . The connected correlato
among bondsbelonging to BG is by no means trivial and is directly related to the co
nected correlator of the plaquette, i.e., the Wilson loopW� associated to the smallest loo
� ⊂ Λ̃, becauseW� = 0 if and only if the bond dual to� belongs toBG. In Section6 we
shall use such a correlator to extract the low-lying mass spectrum of the theory.

3. Cutting all bridges

In our approach the only bonds which play a role in the evaluation of the observ
defining the gauge theory are those belonging to loops. Thus, once a new configuraG

is generated, we first get rid of all bridges. One way of achieving this goal is the follow

(1) Eliminate all the dangling ends (seeFig. 2(a) and (b)). At this stage the remainin
graph is formed by loops and lines of bridges connecting them.

(2) Build a reduced graph in which the only vertices are the lattice sites with more
two incident occupied bonds. The edges of the graph are formed by lines of occ
bonds (Fig. 2(b)).

(3) Erase one edge at a time and apply each time a cluster reconstruction algorith

instance Hoshen–Kopelman[7]) in order to pick off the remaining bridges (Fig. 2(c)).
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Fig. 2. Cutting all bridges of a configuration.

Fig. 3. A 2D sketch of the method used to evaluate the linking of a configuration with a loopγ . The two lines of
solid dots represent the sites on either side of the layer of bonds piercing the surfaceΣ (dotted line). The vertica
broken lines are the switched off bonds. The big open circles represent the clusters of the cut graph to w
sites of the layer belong. The clustera reaches both margins of the layer.

In order to check whether a planar loopγ ⊂ Λ̃ is linked to a configurationG, we first
project out all bridges as discussed. Then we switch off the layer of occupied bonds
pierce the planar surfaceΣ encircled byγ and rebuild the cluster structure of thecut graph.
For a non-trivial linking there must be at least one cluster which reaches the layer on
side (see the graph on the left ofFig. 3). In such a case we build an auxiliary graph in wh
the vertices represent the clusters of sites on either side of the layer; a cluster con
sites of opposite sides is represented by two vertices, one for each side (see the g
the right ofFig. 3). We draw an edge between two clusters in the opposite sides o
layer if they are connected by switched off bonds. The configuration is truly linkedγ
if there is a path (at least) joining two vertices lying on opposite margins of the laye
belonging to the same cluster of the cut graph (like the verticesa anda′ of the figure).

The whole procedure of cutting all bridges of a configuration and then evaluatin
linking property with a set of Wilson loops is time demanding, thus a good implement
is mandatory. However the variance of the measured quantities turns out to be small
one can reach more precise results than the corresponding estimates in ordinary
theories.

4. Confinement mechanisms

According to the recipe given in the previous section, the vacuum expectation va

the Wilson operatorWγ is defined as
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(4.1)〈Wγ 〉 = lim
N→∞

∑
i

Wγ (Gi)/N = number of config. unlinked toγ

total number of configurations
.

What is the functional form of this quantity for large loops? It depends on the valu
the occupation probabilityp. If p is below the percolation thresholdpc, then there are
only finite-size clusters. If the loopγ has much a larger size than the clusters, then
configurations whereWγ (Gi) = 0 necessarily have some cluster located near the l
The number of these clusters grows linearly with the perimeter|γ | of γ and produces th
exponential decay〈Wγ 〉 ∝ e−α|γ |. We say that the theory is deconfined. On the contra
p > pc the theory is confined. Indeed in such a case there is an infinite cluster, the
the number of closed paths linked toγ grows with the areaA of the minimal surfaceΣ
encircled byγ . These paths will pierceΣ at points; letN = αA be their mean numbe
Assuming these points to be randomly distributed on the surface, the probability of fi
k such points insideΣ is binomial,

(4.2)PN(k) =
(

N

k

)
αk(1− α)N−k.

Note that only thek = 0 term contributes to the numerator of(4.1), so the expectation valu
of the Wilson loop becomes

(4.3)〈Wγ 〉 = (1− α)N = e−σA, σ = −α log(1− α).

One thus apparently obtains an area law decay with string tensionσ for any Wilson loop,
including those of small size. There is however a flaw in the argument; even if the c
urations are obtained by populating each bond (or site) of the latticeindependently with a
probabilityp, when all the bridges are erased it is no longer true that the remaining b
are randomly distributed, as anticipated previously. In fact, since the interaction a
the intersection points ofΣ is rather weak, we expect an area law only for large eno
Wilson loops.

Strictly speaking, area law and string tension do not seem to have been consider
viously in percolation studies, being typical notions of gauge theory. There is howev
intimately related quantity, the surface tension, which can also be defined in percolati[8].
Three-dimensional spin systems below critical temperature offer a simple context
this notion can be developed. While in an infinite volume the system shows a sponta
symmetry breaking, in finite volume this cannot occur, and interfaces appear, sep
extended domains of different magnetization. One can define an interface free energF in
terms of the partition functions of the three-dimensional system with a suitable cho
boundary conditions. If, for instance,Za (Zp) is the partition function of an Ising syste
in a cubic lattice with sizeL and periodic in thex andy directions and of size� and an-
tiperiodic (periodic) in thez direction, one hasZa

Zp
= e−�F and it can be shown[9] that in

the largeL limit one has

(4.4)F ∝ σL2,

σ being the surface tension of the interface.
Defining bond percolation as theq → 1 limit of q-state Potts model one can ident
Za as the weighted sum of the configurations where no cluster is wrapped around thez
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direction, whileZp is the total partition function, thereforeZp = 1. As a consequence,
the percolating region one can use Eq.(4.4) to define the surface tension and it is alm
obvious, owing to our definition of Wilson loops, that it coincides with the string tens

In gauge theories two different confining mechanisms were proposed. One is ba
the condensation of center vortices[10]. These objects are string-like structures which
created by gauge transformations with a non-trivial homotopy associated to the ce
the gauge groupC(G). In a 3D lattice the center vortices are represented by a skein of
forming an infinite network in the confining phase[11]. Each center vortex linked with
Wilson loop contributes to it with a factor ofζ ∈ C(G), thus each configuration contribut
with a factorζ n, wheren is the number of linked loops. Although at the end the ove
effect is again a decay of〈Wγ 〉 with an area law, such a mechanism is slightly different fr
the one we have described in pure percolation, where a single linked loop suffices
a weight zero to the configuration. Another difference is that center vortices carry
conserved charge. For instance, ifC(G) = ZN the vortex flux is conserved moduloN ,
while paths of random percolation do not carry any conserved charge and can in
freely.

The other confining mechanism is based on the old conjecture[12] that the vacuum
behaves like a dual superconductor. The key element of this picture is the monopo
densate which squeezes the gauge field generated by a pair of sources (quarks) in
flux tube (the dual version of the Abrikosov vortex). This causes the Wilson loop to d
with an area law. One is led to conjecture that such a thin flux tube should vibrate as
string [13]. As a consequence, the expectation value of a rectangular Wilson loop o
R ×T is expected to have the following asymptotic functional form in the continuum
[14]

(4.5)
〈
W(R,T )

〉 = Ce−p(R+T )−σRT

√
η(i)

√
R

η(iT /R)
,

whereC,p andσ are functions of the coupling constant andη is the Dedekind function

(4.6)η(τ) = q1/24
∞∏

n=1

(
1− qn

)
, q = e2iπτ .

The factor under the square root accounts for the universal quantum contributions
supposedly string-like flux tube describing the interaction between far-away sources

Random percolation, lacking any non-trivial conserved charge, can hardly accou
effects which play the role of magnetic monopole condensation. Notwithstanding th
ficulty, we get indirect evidence of the formation of a vibrating string-like flux tube
measuring the universal shape effects it produces, as discussed in Section5.

5. String tension

We estimated the string tensionσ by fitting the mean values of the Wilson loops as
ciated to squares of sideR to Eq.(4.5), that in such a case becomes( )
(5.1)W(R) = CR1/4 exp −2pR − σR2 .
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Fig. 4. Square Wilson loop as a function ofR for bond percolation in a cubic lattice of sizeL3 = 643 atp = 0.26.

Typically, in a lattice of sizeL3 we considered all the squares withR � L/2. The fits for
not too smallR are very good (seeFig. 4), nevertheless the parameters slightly depend
the valueRmin of the smallest square included in the fit. Since these formulae are exp
to be valid only asymptotically for large values ofR, we progressively eliminated the da
of lowerR until stable parameters were obtained.

In order to check for presence of universal shape effects ascribed to the quantum
ations of the effective string, we considered, as in[15], the quantity

(5.2)R(n,R) ≡ e−n2σ W(R + n,R − n)

W(R)
,

which asymptotically (i.e., largeR andR −n) should be only a function of the ratiot = n
R

,
namely,

(5.3)R(n,R) → f (t) =
√√√√η(i)

√
1− t

η(i 1+t
1−t

)
.

Note that it does not contain any adjustable parameters. This function is plotted inFig. 5
and compared with the numerical data for three different values ofp. The presence of th
expected universal shape effects seems uncontroversial.

The string tensionσ is a physical quantity with the dimensions of an inverse squ
length, hence it is expected to exhibit the following power law behaviour sufficiently c
to the percolation threshold

2ν
 (5.4)σ = S(p − pc) ,
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Fig. 5. The universal shape effects of Eq.(5.3)are compared with numerical data of Eq.(5.2) for three different
values ofp.

whereν is the critical exponent of the correlation length in 3D percolation. We used
valueν = 0.8765(16)(2) of Ref. [16].1

Keepingν as a parameter to be fitted in Eq.(5.4), our result from the data referrin
to site percolation isν = 0.874(5), in agreement with the result quoted from Ref.[16];
similarly, the result we obtain in the bond percolation case isν = 0.859(15).2

The percolation thresholdpc depends on the lattice and on the kind of percolation (
or bond) which is studied. We checked Eq.(5.4)in the percolating region of three differe
lattices: simple cubic (SC) with site or bond percolation and body-centered cubic (
with bond percolation. Precise estimates ofpc are known and are reported inTable 1. In
the SC cases we used a lattice of sizeL3 = 643, while in the BCC case we hadL3 = 553.
In all cases the one-parameter fit to Eq.(5.4) is very good and the scaling window see
rather wide (seeFig. 6). The resulting amplitudesS for the three lattices are reported
Table 1.

Noteworthy, in order to extract the string tensionσ we have thus far assumed that t

square Wilson loops obey the asymptotic form(5.1), where the factorR
1
4 accounts for the

contribution of the string fluctuations. If one neglected this factor and only took the
term into account, theχ2 test of the critical power law(5.4)would grow worse by one o
two orders of magnitude, depending on the kind of lattice. We consider this fact an
strong evidence of a vibrating, confining string.

1 The first number between parenthesis is the statistical error, the second comes from the uncertain
scaling correction exponentω.

2 The data analysis in the bond percolation case is slightly more complicated, due to the fact that the co
length is larger, and this induces larger finite size effects as the critical value is approached. In our anal

kept this aspect into account.
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Fig. 6. The string tensionσ as a function ofp−pc for three different lattices: BCC bond (top line) SC bond (m
dle line) and SC site. The three parallel lines are one-parameter fits to Eq.(5.4). The corresponding amplitude
are reported inTable 1.

Table 1
The amplitude of the string tension for three different lattices. Errors in parenthesis affect the last digits

Lattice pc S χ2/d.o.f.

SC site 0.3116081(7)(2) [16]1 3.370(8) 1.15
SC bond 0.2488126(5) [17] 8.90(3) 0.30
BCC bond 0.1802875(10) [17] 22.07(2) 0.98

6. Spectrum

As for standard gauge theories, we expect that the confining phase of percolatio
sesses a rich spectrum of physical states with increasing mass and spin, that we s
glueballs.

The basic method that goes into the computation of such mass spectrum is very
One first constructs a linear combination of Wilson loops on a fixed time slice of the t
dimensional lattice carrying the quantum numbers of the state one wishes to inves
One then builds zero momentum operators by summing such a linear combination o
entire spatial lattice. The simplest example of a zero momentum operator coupling
spin 0+ states is given by

(6.1)Φ0+(t) =
∑
x,y

[
W�1(x, y, t) + W�2(x, y, t)

]
,

whereW�j (�x) denotes an elementary plaquette variable with base at�x = (x, y, t) and
orthogonal to thej coordinate axis. According to Section2, in random percolation th
plaquette variable is replaced by the dual link variable�j (�x), defined as equal to 1 if th

corresponding bond belongs to the subsetBG of loops and null otherwise. The low-lying
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Fig. 7. Comparison between the standard cluster correlator defined in Eq.(6.5) and the connected plaqu
tte–plaquette correlator in a 32× 32× 64 cubic lattice atp = 0.260. The straight line is an exponential fit
the cluster correlator data (×). These data have been displaced downwards by two orders of magnitude fo
ity. The other line is a two-exponential fit to the plaquette data (+). The semi-logarithmic plot makes it evide
that in the latter case a single exponential does not suffice.

mass spectrum can be extracted by studying the exponential decay of the connected
tor C(t) = 〈Φ0+(t)Φ0+(0)〉−〈Φ0+〉2, which is expected to have the following asympto
expansion

(6.2)C(t) =
∑
n

cne
−mnt ,

wherecn denote positive constants andmn are the glueball masses. An example of s
a correlator in a SC bond lattice is reported inFig. 7, where it is evident that at least tw
different scalar states contribute toC(t). The estimates of the lowest mass in the ra
0.258� p � 0.270 fit well with the scaling form (seeFig. 8)

(6.3)m = M0(p − pc)
ν,

with

(6.4)M0 = 12.45± 0.07.

Also the first excited state seems to follow the same power law as expected, thou
errors are rather big. Its massM ′

0 is about twiceM0.
Such a behaviour is very different from the one observed in the standard two

correlation function of the percolation problem, defined as the probabilityG(�x, �x′) that
the sites�x and�x′ are in the same cluster.3 The corresponding connected, zero-moment

3 This quantity is directly related to the correlator inq → 1 limit of the q-state Potts model, see for instan

Ref. [18], p. 156.
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Fig. 8. The mass of the lowest state as a function ofp in a simple cubic bond percolating lattice. The dash
curve is a one-parameter fit to Eq.(6.3).

projection

(6.5)C(t) =
∑
x,y

[
G(0, �x) − G(0,∞)

]
,

exhibits a single exponential behaviour with a mass term which coincides, within th
merical accuracy, with that of the lowest energy state coupled to the plaquette op
(seeFig. 7). This indicates that the standard cluster correlator couples only to the lo
glueball, while the new observables suggested by the gauge theory interpretation
percolation disclose a totally unexpected spectrum of physical states.

The lightest spinning glueball is the 2+ state. It can be observed in the exponential de
of the correlation function of the operator

(6.6)Φ2+(t) =
∑
x,y

[
�1(x, y, t) − �2(x, y, t)

]
.

A difficulty encountered in this case is that the signal is drowned within the statistical
for values oft beyond three or four lattice spacings. In spite of this accuracy problem
can still verify that in a SC bond lattice the scaling form(6.3) is approximately obeye
with an amplitude

(6.7)M2+ = 80± 10.

In order to have more accurate results on the mass spectrum the basis of the op
should be enlarged to Wilson loops of different shapes, trying to enhance their o

with the glueball states.
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7. Deconfinement at finite temperature

In quantum field theory the concept of temperature is introduced by simply compa
ing the Euclidean time direction and identifying the inverse temperature with the tem
extension of the space–time manifold. Lattice field theories at a temperatureT are formu-
lated in a slab which is infinite in the spatial dimensions, but of finite length� = 1/T (in
lattice spacing units) and periodic in the remaining temporal direction.

In any confining gauge theory there is a critical temperatureTc above which the system
is deconfined in the sense that forT � Tc the string tensionσ vanishes. In this sectio
we demonstrate that the same phenomenon also occurs in random percolation. In th
case the deconfinement mechanism is particularly transparent, showing its purely g
ric origin: non-vanishing string tension requires an infinite, percolating, cluster. Shrin
the width of the slab reduces the number of possible percolating paths along the
directions until the infinite cluster crumbles away, yielding a vanishingσ .

To put it in different terms, note that as the temperature varies from zero to infin
three-dimensional system is gradually dominated by two-dimensional behaviour; in p
ular the percolation threshold is a decreasing function of the space dimensions. For in
in the SC bond lattice atT = 0 the percolation threshold is atpc(D = 3) = 0.2488. . . (see
Table 1). At T = ∞ the system reduces to a square lattice, wherepc(D = 2) = 1

2, hence
heating a system which at zero temperature lies in the percolating phase withp < 1

2 in-
evitably undergoes a deconfinement transition at a finite temperatureTc.

In order to estimateTc in various site or bond percolation lattices we considered a
of sizeLx × Ly × � with Lx = Ly = L � � and periodic boundary conditions in all d
rections (seeFig. 9). We calculated the probabilityRL(p) for a cluster to wrap around on
of the large dimensions. Wrapping probabilities can be defined in different ways:
ping around thex direction, around they direction, around either direction, around bo

Fig. 9. The wrapping probabilityRL in a simple cubic site percolating lattice for� = 7 andL = 60,70,100. The
vertical arrow denotes the estimated value ofp� atL = ∞ and the horizontal line indicates the exact planar va

of R∞.
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directions, etc. To be definite, we consider wrapping around thex direction. For largeL it
coincides with the probability that the system percolates alongx.

We evaluatedRL(p) using a very efficient algorithm described by Newman a
Ziff [19]. For a bond percolation problem it consists of repeatedly adding a random
to an initially empty lattice, identifying the clusters joined by the bond and merging
if they are different. At each step one checks whether the touched cluster wraps
x using a clever method described in Ref.[20]. The process stops as soon as a wrap
cluster is detected. In this way one can evaluate the probabilityQL(n) that a random con
figuration withn occupied bonds is wrapping aroundLx for anyn � N , whereN is the
total number of bonds of the lattice. This method may be adapted to site percolatio
straightforward way. Then one simply finds the required quantityRL(p) for any value of
p by convolution with the binomial distribution

(7.1)RL(p) =
∑
n

(
N

n

)
pn(1− p)N−nQL(n).

Fig. 9 shows some examples ofRL(p) in the case of SC site percolating lattice. In t
L → ∞ limit this wrapping probability becomes a step function. We have

(7.2)R∞(p) =
{

0 for p < p�,

1 for p > p�,

where the threshold valuep = p� depends on the type of lattice and on its width�. When
L = ∞ the slab system is equivalent to a 2D torus, where the wrapping probabil
criticality has been calculated exactly by Pinson[21] and isR∞(p�) = 0.521058290. . . .
We can use his result to measure the value ofp� in a slab of width� by finding the value
of p for which

(7.3)RL(p) = R∞(p�).

This method was first applied in the case of the Ising model in Ref.[22] (with the
appropriate value ofR∞, of course). These estimates in the case of 2D percolation
out to scale particularly well with the system size: Newman and Ziff argued that in p
lattices the leading order finite size correction goes like

(7.4)p = p� + cL−2−1/ν2 = p� + cL−11/4,

whereν2 = 4
3 is the thermal exponent of 2D random percolation.

We checked it in the slab geometry finding good agreement forL large enough, a
Fig. 10shows in the case of a slab of width� = 6.

We estimated in this way the thresholdp� for seven different lattices. The results a
reported inTable 2. The slab widths (or equivalently the inverse temperatures) were ch
in such a way that the values ofp� lie in the scaling region of the string tensionσ , as
determined in Section5. In this manner we were able to evaluate also the ratioTc/

√
σ

using the amplitudes ofTable 1. It turns out that these ratios for different lattices a
widths are clearly compatible with a common value, as required by universality (se
column ofTable 2).

In (d + 1)-dimensional field theory at finite temperature there is a characteristic

play betweend + 1 andd critical behaviours. This is particularly evident in the present
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Fig. 10. Finite-size scaling of the estimatedL → ∞ value ofp� for bond percolation in a slice of SC lattice
sizeL × L × 6 with 32� L � 80. Each point corresponds to about 108 configurations. The solid line is a fit t
Eq.(7.4).

Table 2
The criticalp� for different lattices at different temperatures and the corresponding universal ratioTc/

√
σ as

obtained by combining Eqs.(5.4) and (7.5). Errors in parenthesis affect the last digits

Lattice 1/T p� Tc/
√

σ

SC site 7 0.3459514(12) 1.494(11)
BCC bond 3 0.21113018(38) 1.497(10)
BCC bond 4 0.20235168(59) 1.506(11)
SC bond 5 0.278102(5) 1.480(12)
SC bond 6 0.272380(2) 1.492(13)
SC bond 7 0.268459(1) 1.500(13)
SC bond 8 0.265615(5) 1.504(14)

instance: thep� values are extracted through a 2D percolation power law(7.4) in order
to take into account the finite size scaling tied toL. However the tower ofp� values as a
function of the width� obeys a typical power law of 3D percolation:

(7.5)p� = pc + 1

(Tc�)1/ν
,

whereν indicates, as in all the other formulae of this paper, the thermal exponent
percolation,pc is the critical threshold as listed inTable 1and the amplitudeTc depends
on the kind of lattice.Fig. 11shows the fourp� values of the bond SC lattice as a functi
of �−1/ν . A one-parameter fit to Eq.(7.5)yields

(7.6)Tc = 4.45± 0.02.

It should be noted parenthetically that, as thep�’s are essentially two-dimensional quan
ties, they can be evaluated with high precision. Comparison betweenTables 1 and 2shows

that in some cases the level of precision of those overcomes that of the best estimates ofpc.
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Fig. 11. Finite-size scaling ofp� as a function of�−1/ν , where� is the width of a SC lattice in bond percolatio
The solid line is a one-parameter fit to Eq.(7.5). The statistical errors are much smaller than the symbol size

Moreover, with a modest additional computational effort, it would be possible to fu
improve their precision. Thus one could perhaps envisage to apply systematically Eq(7.5)
to improve the estimates ofpc and/orν.

8. Universality class of deconfinement

The deconfined phase of any(d + 1)-dimensional gauge theory at finite temperat
is characterized by the vanishing of the string tensionσ . The interaction between stat
sources (quarks) is described in terms of Polyakov operators. These are straight
loops wrapped around the short periodic direction� (seeFig. 12). The Polyakov–Polyako
correlator〈P(0)P ( �R)〉 of two parallel Polyakov operators only depends on their rela
positions in thed-dimensional sub-lattice. At the deconfining point it is expected to o
a power law dictated by the universality class of the transition.

The critical behaviour of gauge theories at the deconfining temperature is well des
by the Svetitsky–Yaffe (SY) conjecture[23] which can be formulated as follows. Suppo
a (d + 1)-dimensional gauge theory with gauge groupG has a second-order deconfin
ment transition at a certain temperatureTc; then its universality class is the same of t
order–disorder transition of ad-dimensional spin system with a global symmetry gro
coinciding with the center of the gauge group. In particular, the Polyakov–Polyakov c
lator corresponds to the spin-spin correlator of such ad-dimensional system. Therefore,
the critical point, it should decay as

(8.1)
〈
P(0)P ( �R)

〉 = const

Rd−2+η
,

whereη is the magnetic exponent of the spin model. The validity of this conjecture

been well established in a large number of numerical studies.
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Fig. 12. The slab geometry of the finite temperature setting. The two thick lines represent two Polyako
wrapping in the periodic temperature direction.

Fig. 13. The dashed lines represent the 1D section of the four topologically different surfaces bounded by
Polyakov loops (solid circles) in the case of periodic bc.

In the present case the above conjecture requires some generalization, owing to
that not only the center, but the whole gauge group is trivial. Actually the SY conje
is somehow related to the dimensional crossover in a layered lattice system[24]. The uni-
versality class of such a system, as it approaches a critical point, depends on the
of spatial directions which are going to infinity in the thermodynamic limit. This sim
observation provides the basis for arguing that the critical behaviour of percolatio
slab of finite thickness is well described by the 2D percolation universality class. T
also supported by the fact that finite size scaling of threshold probabilityp� is driven by

the thermal exponentν2, as Eq.(7.4)andFig. 10show.
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Fig. 14. Polyakov–Polyakov correlator at deconfining temperature as a function of the scaling variablR−η ,
whereη = 5

24 is the magnetic exponent of 2D percolation. The lattice size is 200× 200× 6. The solid line is a

one-parameter fit to Eq.(8.1)of the data withR > 2. The resultingχ2/d.o.f. is 0.46.

Such a conclusion is much less obvious, and more interesting, when consideri
Polyakov–Polyakov correlator. This quantity can be evaluated using exactly the
method described in Section3 for the Wilson loops. One simply has to take into acco
that in the Wilson loop the surfaceΣ (seeFig. 3) used to evaluate cluster wrapping is
rectangle, while in the latter case is a cylinder bounded by the two Polyakov lines. Pe
boundary conditions put into play another difference: there are now four topologicall
ferent surfaces bounded by the two Polyakov lines (seeFig. 13), hence the correlator mu
be written as the sum of these four contributions. When the distanceR between Polyakov
lines is much smaller than lattice sizeL the main contribution comes from the top tw
surfaces ofFig. 13.

One instance is reported inFig. 14, where we plot the estimated Polyakov–Polyak
correlator extracted from 104 configurations in a 200× 200× 6 lattice at the critical value
of p6 as determined inTable 2. Plotting these data versusR−η with η = 5

24 shows lin-
ear behaviour, as expected for a critical system which lies in the universality class
percolation.

9. Conclusions

We have studied some consequences of a new point of view in three-dimension
dom percolation which allows us to reinterpret it as a full-fledged gauge theory.

A key difference between the conventional and the present approach is that ins
studying the universal scalings through the size distribution of random clusters we
consider their topological entanglement with suitable closed paths. This suggests a

mulation in the language of gauge theory. In this context a more detailed description of 3D
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percolation universality class emerges as a major issue: the gauge-percolation dic
leads to define new physical quantities that can be used to extract new universal am
ratios.

A typical example is the ratioT 2
c /σ between the (square of) deconfining tempera

Tc and the string tensionσ . We evaluated it on seven different lattices (seeTable 2) finding
excellent agreement with universality. Notice that neitherTc nor σ are truly foreign con-
cepts of percolation theory: slab percolation has always been a subject of intensive
We have seen that string tension is strictly related to the surface tension, which
defined in percolation[8]. The novelty introduced by the gauge theory interpretation
previously unsuspected relationship between slab percolation and surface tension.

Another class of universal amplitude ratios came to us as a surprise. It turns out t
Wilson loop correlators receive contribution from a tower of physical states of incre
mass and spin, like in ordinary gauge theories. The ratios of their masses define un
quantities which further characterize the universality class of 3D percolation.

Transcribing percolation into gauge theory language has also some interesting
quences in the study of quark confinement mechanisms. The confinement gener
a random percolating cluster is similar, but not identical, to that produced by an in
network of center vortices. In particular the latter carries some conserved charge
regulates their mutual intersections, while the former does not carry any conserved
and intersects freely. This indicates that the intersection rules of center vortices do n
an important role in producing confinement.

One of the most surprising findings of the present approach is the observation o
universal shape effects in the vacuum expectation value of Wilson loops which hav
always ascribed to a different picture of confinement. This picture says that the flux
gauge field generated by pair of quarks is squeezed by the magnetic monopole con
into a string-like structure which can vibrate freely. It turns out that these very vibra
generate the universal effects mentioned above. Apparently, the two different pictu
confinement are different descriptions of the same physical phenomenon.

It would be interesting to extend our percolation approach to a 4D gauge theory
would require the study of plaquette percolation and the Wilson loops should measur
entanglement with closed surfaces.
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