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Abstract

Three-dimensional bond or site percolation theory on a lattice can be interpreted as a gauge the-
ory in which the Wilson loops are viewed as counters of topological linking with random clusters.
Beyond the percolation threshold large Wilson loops decay with an area law and show the universal
shape effects due to flux tube quantum fluctuations like in ordinary confining gauge theories. Wilson
loop correlators define a non-trivial spectrum of physical states of increasing mass and spin, like the
glueballs of ordinary gauge theory. The crumbling of the percolating cluster when the length of one
periodic direction decreases below a critical threshold accounts for the finite temperature deconfine-
ment, which belongs to 2D percolation universality class.

0 2005 Elsevier B.V. All rights reserved.

PACS: 11.15.Ha; 05.50.+q; 05.70.Jk; 05.70.Lg

1. Introduction

Percolation is a purely geometrical phenomenon which in many respects resembles
a continuous thermal phase transition. The theoretical description of the percolation
processes is conventionally given in terms of the cluster §idesand most of the uni-
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versal scalings deal with size distribution of clusters. The point of view which is taken in
this paper is different. We focus on topological entanglement of random clusters and use
it to describe how percolation theory in three dimensions can be viewed as a full-fledged
gauge theory.

Though the gauge group of the theory in question is trivial (it is¢ghe 1 limit of the
symmetric groups,), the occurrence of a confining phase yields some new hints on the
mechanisms of quark confinement of more general theories.

Transcribing percolation in terms of gauge theory has also some important conse-
guences for percolation itself. In three-dimensional systems there are almost no exact
results whatsoever, but in gauge theories we have a number of well-verified conjectures
that can be translated into the language of percolation. In this way we shall, for instance,
relate certain linking properties of the closed paths within a percolating cluster to the uni-
versal quantum fluctuations of the chromoelectric flux tube joining a quark pair in the
confining phase of whatever gauge theory.

An unsuspected property of random percolation which emerges from this new viewpoint
is that one can build up new classes of correlators which define, through their exponen-
tial decay, a variety of different correlation lengths> &> > ---. Their inverse &1 <
1/&> < --- form, in the gauge theory language, the mass spectrum of the model, which
turns out to be composed by a (possibly infinite) tower of physical states of increasing
mass and spin—the glue-balls of the corresponding gauge theory. Their mass ratios near
the percolation point define a totally new set of critical amplitude ratios belonging to the
universality class of 3D random percolation.

Another piece of useful information comes from considering percolation in a slab which
is infinite in two dimensions, but of finite lengthand periodic in the remaining direc-
tion. The associated gauge model describes a system at finite temp@ratutge. This
transition is accurately described by the universality class of two-dimensional random per-
colation, but the corresponding deconfining temperafurmay be used to define a new
critical amplitude of the three-dimensional system.

We test the universality of this new set of critical amplitudes by performing large scale
numerical experiments in three different kinds of lattices: the simple cubic (SC) with bond
or site percolation and the body centered cubic lattice (BCC) with bond percolation. The
numerical implementation of these systems is straightforward in comparison with simu-
lations of ordinary gauge models: no Markovian process is heeded and there are neither
thermalization problems nor critical slowing down. Preliminary results have been pre-
sented if2].

The organization of the paper is as follows. In Sec#love define a new class of observ-
ables of the percolation theory to be identified with the Wilson loops of the corresponding
gauge theory. In Sectidhwe describe a method to study the linking properties of the ran-
dom clusters which is at the heart of our analysis. Seetigrdevoted to the comparison of
confinement mechanisms and in Secttowe extract the string tension (the gauge theory
analogue of the surface tension) and show the relevance of the universal terms generated by
guantum fluctuations of an underlying effective string. In Sedfiere study the plaquette
correlators in order to find the low-lying states of the spectrum. Settisevoted to the
transcription of the percolation on a slab into a gauge system at finite temperature and Sec-
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tion 8 discusses the universality class of the finite temperature deconfinement transition.
Finally in Sectior® we draw some concluding remarks.

2. Observables

The most basic observables of any gauge theory are the Wilson loops. These are opera-
tors which assign to each pdif, y) formed by an arbitrary gauge configuratiérand any
closed patty of the space a suitably defined complex numb&r(C). Their importance
stems from the fact that they serve as order parameters for confinement. The confining
phase is expected to show up inaea law for the vacuum expectation value of large Wil-
son loops. The area law means that i scaled up, keeping its shape fixed and increasing
its encircled minimal ared, then(W,,) vanishes exponentially with:

(W) oce ™4, (2.1)

where the area coefficient called string tension, is the fundamental quantity of whatever
confining gauge theory.

One can define similar observables in the framework of random percolation. In this con-
text the configurations are generated simply by occupying each site or bond on an initially
empty 3D latticeA with independent probability. Two sites are considered neighbours
if they share one bond. The resulting configuration is a gi@gitawn on the lattice, com-
posed by the occupied bonds (bond percolation problem) or by the bonds joining occupied
neighbour sites (site percolation problem). The connected componeGtsie theclus-
ters of the configuration. We choose g% the closed paths of the dual lattide The value
W, (G) measures the topological entanglement betweandG. More precisely we apply
the following rule

(1) W, (G) =1if no cluster ofG is linked toy;
(2) W, (G) =0 otherwise.

This definition did not come out of the blue. Starting from the Fortuin—Kasteleyn ran-
dom cluster representation of the 3D Ising md@¢lcombined with the Kramers—Wannier
duality [4], it is easy to express the Wilson lodP, belonging to &, gauge system in
terms of the winding numbers modulo 2 of the Fortuin—Kasteleyn clusters across the
loop [5]. Generalizing this result tg-state Potts model one is led to the above rule in the
case of non-integeg. A recently developed algorithm could even allow to evaluate ex-
plicitly these quantities for real > 0 [6]. We extend the above recipe to any percolating
system, owing to the fact that bond percolation can be viewed ag thel limit of the
g-state Potts model.

The removal of an occupied bomdrom a graphG can lead to two different issues. If
the numbek (G) of clusters is kept invariant, thenis necessarily a step of a closed path
(or loop) of G, whereas ifc(G) increases by oné, cannot lie in a loop and is called a
bridge (seeFig. 1). Clearly only the former bonds contribute ¥, (G). If two graphsG
and G’ have the same loops and differ only in the bridges, then they yield the same value
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Ww=0

Fig. 1. The closed thick lineg andy’ represent Wilson loops. The dashed lines are bridges of the cluster. The
other solid lines are closed paths of the clusteis linked to the cluster, whilg’ is unlinked.

of W, for anyy. In more technical terms we may write the double implication

GUG —GNnGisatree & W,(G)=W,(G), Vy C 4, (2.2)

hence the transformatiaéi — G’ has some resemblance to a gauge transformation.

Note that the connected correlator among occupied bonds is exactly zero by construc-
tion, but this is not an invariant quantity under the abave> G’ transformation. Cutting
all bridges ofG yields the maximal invariant subsst; of G, made by bonds belonging
to some loop. Of course we haVg, (G) = W, (Bg) for any y. The connected correlator
among bond$elonging to Bg is by no means trivial and is directly related to the con-
nected correlator of the plaquette, i.e., the Wilson |8gp associated to the smallest loop
O c A, becausé¥y = 0 if and only if the bond dual ta] belongs toBg. In Sectioné we
shall use such a correlator to extract the low-lying mass spectrum of the theory.

3. Cutting all bridges

In our approach the only bonds which play a role in the evaluation of the observables
defining the gauge theory are those belonging to loops. Thus, once a new configGration
is generated, we first get rid of all bridges. One way of achieving this goal is the following.

(1) Eliminate all the dangling ends (s€&g. 2(a) and (b)). At this stage the remaining
graph is formed by loops and lines of bridges connecting them.

(2) Build a reduced graph in which the only vertices are the lattice sites with more than
two incident occupied bonds. The edges of the graph are formed by lines of occupied
bonds Fig. 2b)).

(3) Erase one edge at a time and apply each time a cluster reconstruction algorithm (for
instance Hoshen—Kopelmgr) in order to pick off the remaining bridgeBig. c)).
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Fig. 2. Cutting all bridges of a configuration.

Fig. 3. A 2D sketch of the method used to evaluate the linking of a configuration with g/lobjpe two lines of

solid dots represent the sites on either side of the layer of bonds piercing the stirfdotted line). The vertical

broken lines are the switched off bonds. The big open circles represent the clusters of the cut graph to which the
sites of the layer belong. The clustereaches both margins of the layer.

In order to check whether a planar loppc A is linked to a configuratioi;, we first
project out all bridges as discussed. Then we switch off the layer of occupied bonds which
pierce the planar surfacg encircled byy and rebuild the cluster structure of ttig graph.
For a non-trivial linking there must be at least one cluster which reaches the layer on either
side (see the graph on the leftkif). 3). In such a case we build an auxiliary graph in which
the vertices represent the clusters of sites on either side of the layer; a cluster connecting
sites of opposite sides is represented by two vertices, one for each side (see the graph on
the right of Fig. 3). We draw an edge between two clusters in the opposite sides of the
layer if they are connected by switched off bonds. The configuration is truly linked to
if there is a path (at least) joining two vertices lying on opposite margins of the layer, but
belonging to the same cluster of the cut graph (like the verticasda’ of the figure).

The whole procedure of cutting all bridges of a configuration and then evaluating its
linking property with a set of Wilson loops is time demanding, thus a good implementation
is mandatory. However the variance of the measured quantities turns out to be small, hence
one can reach more precise results than the corresponding estimates in ordinary gauge
theories.

4. Confinement mechanisms

According to the recipe given in the previous section, the vacuum expectation value of
the Wilson operatoWw,, is defined as
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number of config. unlinked tg
total number of configurations

(Wy) = lim > Wy (Go/N = (4.2)

1
What is the functional form of this quantity for large loops? It depends on the value of
the occupation probability. If p is below the percolation threshold., then there are
only finite-size clusters. If the loop has much a larger size than the clusters, then the
configurations wheré¥, (G;) = 0 necessarily have some cluster located near the loop.
The number of these clusters grows linearly with the perimeteof y and produces the
exponential decayW, ) oc e=*/7I. We say that the theory is deconfined. On the contrary if
p > p. the theory is confined. Indeed in such a case there is an infinite cluster, therefore
the number of closed paths linked fogrows with the areal of the minimal surfacex
encircled byy. These paths will pierc& at points; letN = « A be their mean number.
Assuming these points to be randomly distributed on the surface, the probability of finding
k such points inside’ is binomial,

Py (k) = (Z)ak(l—a)lvk. (4.2)

Note that only thé& = 0 term contributes to the numerator(df1), so the expectation value
of the Wilson loop becomes

W) =1-a)¥=e4, o =—alogl-a). (4.3)

One thus apparently obtains an area law decay with string teasfonany Wilson loop,
including those of small size. There is however a flaw in the argument; even if the config-
urations are obtained by populating each bond (or site) of the latiiispendently with a
probability p, when all the bridges are erased it is no longer true that the remaining bonds
are randomly distributed, as anticipated previously. In fact, since the interaction among
the intersection points aF is rather weak, we expect an area law only for large enough
Wilson loops.

Strictly speaking, area law and string tension do not seem to have been considered pre-
viously in percolation studies, being typical notions of gauge theory. There is however an
intimately related quantity, the surface tension, which can also be defined in percf8tion
Three-dimensional spin systems below critical temperature offer a simple context where
this notion can be developed. While in an infinite volume the system shows a spontaneous
symmetry breaking, in finite volume this cannot occur, and interfaces appear, separating
extended domains of different magnetization. One can define an interface free &niergy
terms of the partition functions of the three-dimensional system with a suitable choice of
boundary conditions. If, for instancg, (Z,) is the partition function of an Ising system
in a cubic lattice with sizd. and periodic in ther andy directions and of sizé and an-
tiperiodic (periodic) in the; direction, one ha% = ¢~ and it can be show[9] that in
the largeL limit one has

Foxol? (4.4)

o being the surface tension of the interface.
Defining bond percolation as the— 1 limit of ¢-state Potts model one can identify
Z, as the weighted sum of the configurations where no cluster is wrapped around the
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direction, whileZ, is the total partition function, therefotg, = 1. As a consequence, in
the percolating region one can use E44)to define the surface tension and it is almost
obvious, owing to our definition of Wilson loops, that it coincides with the string tension.

In gauge theories two different confining mechanisms were proposed. One is based on
the condensation of center vortidd®]. These objects are string-like structures which are
created by gauge transformations with a non-trivial homotopy associated to the center of
the gauge grou@(G). In a 3D lattice the center vortices are represented by a skein of loops
forming an infinite network in the confining phafkl]. Each center vortex linked with a
Wilson loop contributes to it with a factor gfe C(G), thus each configuration contributes
with a factor¢”, wheren is the number of linked loops. Although at the end the overall
effectis again a decay ¢#, ) with an area law, such a mechanism is slightly different from
the one we have described in pure percolation, where a single linked loop suffices to give
a weight zero to the configuration. Another difference is that center vortices carry some
conserved charge. For instanceCifG) = Zy the vortex flux is conserved modulg,
while paths of random percolation do not carry any conserved charge and can intersect
freely.

The other confining mechanism is based on the old conje¢i2jethat the vacuum
behaves like a dual superconductor. The key element of this picture is the monopole con-
densate which squeezes the gauge field generated by a pair of sources (quarks) into a thin
flux tube (the dual version of the Abrikosov vortex). This causes the Wilson loop to decay
with an area law. One is led to conjecture that such a thin flux tube should vibrate as a free
string [13]. As a consequence, the expectation value of a rectangular Wilson loop of size
R x T is expected to have the following asymptotic functional form in the continuum limit
[14]

(W(R, T))= CemP(RITD)=oRT M, (4.5)
nGT/R)
whereC, p ando are functions of the coupling constant apt the Dedekind function

o
n(r) = 611/241_[(1 _ qn)’ qg= eZint‘ (46)

n=1
The factor under the square root accounts for the universal quantum contributions of the
supposedly string-like flux tube describing the interaction between far-away sources.

Random percolation, lacking any non-trivial conserved charge, can hardly account for

effects which play the role of magnetic monopole condensation. Notwithstanding this dif-
ficulty, we get indirect evidence of the formation of a vibrating string-like flux tube by
measuring the universal shape effects it produces, as discussed in Section

5. String tension

We estimated the string tensienby fitting the mean values of the Wilson loops asso-
ciated to squares of side to Eq.(4.5), that in such a case becomes

W(R) = CRY*exp(—2pR — o R?). (5.1)
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Fig. 4. Square Wilson loop as a function®ffor bond percolation in a cubic lattice of sizé = 643 atp =0.26.

Typically, in a lattice of size.® we considered all the squares wigh< L/2. The fits for
not too smallrR are very good (seEig. 4), nevertheless the parameters slightly depend on
the valueRnmin of the smallest square included in the fit. Since these formulae are expected
to be valid only asymptotically for large values Bf we progressively eliminated the data
of lower R until stable parameters were obtained.

In order to check for presence of universal shape effects ascribed to the quantum fluctu-
ations of the effective string, we considered, aglB), the quantity

_n2¢ W(R+n,R—n)

R(n,R)=e WER

: (5.2)

which asymptotically (i.e., larg® and R — n) should be only a function of the ratic= 7%,
namely,

R, R)— f()= (5.3)

Note that it does not contain any adjustable parameters. This function is ploE&d
and compared with the numerical data for three different valugs @he presence of the
expected universal shape effects seems uncontroversial.

The string tensiow is a physical quantity with the dimensions of an inverse square
length, hence it is expected to exhibit the following power law behaviour sufficiently close
to the percolation threshold

o=S(p—p)?, (5.4)
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Fig. 5. The universal shape effects of £§.3) are compared with numerical data of K§.2) for three different
values ofp.

wherev is the critical exponent of the correlation length in 3D percolation. We used the
valuev = 0.876516)(2) of Ref.[16].1

Keepingv as a parameter to be fitted in E.4), our result from the data referring
to site percolation i = 0.874(5), in agreement with the result quoted from Rif6];
similarly, the result we obtain in the bond percolation case-is0.859(15).2

The percolation threshold. depends on the lattice and on the kind of percolation (site
or bond) which is studied. We checked E§.4)in the percolating region of three different
lattices: simple cubic (SC) with site or bond percolation and body-centered cubic (BCC)
with bond percolation. Precise estimatesppfare known and are reported Tiable 1 In
the SC cases we used a lattice of siZe= 64, while in the BCC case we hatf® = 55°.
In all cases the one-parameter fit to E61.4) is very good and the scaling window seems
rather wide (seéig. 6). The resulting amplitudeS$ for the three lattices are reported in
Table 1

Noteworthy, in order to extract the string tensi@rwe have thus far assumed that the

square Wilson loops obey the asymptotic fairl), where the factoR ? accounts for the
contribution of the string fluctuations. If one neglected this factor and only took the area
term into account, the 2 test of the critical power law5.4) would grow worse by one or

two orders of magnitude, depending on the kind of lattice. We consider this fact another
strong evidence of a vibrating, confining string.

1 The first number between parenthesis is the statistical error, the second comes from the uncertainty in the
scaling correction exponent

2 The data analysis in the bond percolation case is slightly more complicated, due to the fact that the correlation
length is larger, and this induces larger finite size effects as the critical value is approached. In our analysis, we
kept this aspect into account.
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Fig. 6. The string tensioa as a function op — p. for three different lattices: BCC bond (top line) SC bond (mid-
dle line) and SC site. The three parallel lines are one-parameter fits {&.Byj.The corresponding amplitudes
are reported ifable 1

Table 1

The amplitude of the string tension for three different lattices. Errors in parenthesis affect the last digits
Lattice Pe S x2/d.o.f.
SC site 031160817)(2) [16]* 3.3708) 115

SC bond 24881265) [17] 8.90(3) 0.30
BCC bond 0180287%10) [17] 22.07(2) 0.98

6. Spectrum

As for standard gauge theories, we expect that the confining phase of percolation pos-
sesses a rich spectrum of physical states with increasing mass and spin, that we still call
glueballs.

The basic method that goes into the computation of such mass spectrum is very simple.
One first constructs a linear combination of Wilson loops on a fixed time slice of the three-
dimensional lattice carrying the quantum numbers of the state one wishes to investigate.
One then builds zero momentum operators by summing such a linear combination over the
entire spatial lattice. The simplest example of a zero momentum operator coupling to the
spin 0" states is given by

% (1) =) [Worlx, y, 1) + Waz(x, . 1)), (6.1)
X,y
where W ;(X) denotes an elementary plaquette variable with basé=at(x, y, ) and
orthogonal to thej coordinate axis. According to Sectié) in random percolation the
plaquette variable is replaced by the dual link variahléx), defined as equal to 1 if the
corresponding bond belongs to the sulbBetof loops and null otherwise. The low-lying
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Fig. 7. Comparison between the standard cluster correlator defined i(65y.and the connected plaque-
tte—plaquette correlator in a 3232 x 64 cubic lattice afp = 0.260. The straight line is an exponential fit to

the cluster correlator data{. These data have been displaced downwards by two orders of magnitude for clar-
ity. The other line is a two-exponential fit to the plaquette data The semi-logarithmic plot makes it evident
that in the latter case a single exponential does not suffice.

mass spectrum can be extracted by studying the exponential decay of the connected correla-
tor C(t) = (@ (1)@ (0)) — (@%F)2, which is expected to have the following asymptotic
expansion

C(t)y=Y cpe™™", (6.2)
n
wherec, denote positive constants ang, are the glueball masses. An example of such
a correlator in a SC bond lattice is reportedrig. 7, where it is evident that at least two
different scalar states contribute €r). The estimates of the lowest mass in the range
0.258< p < 0.270 fit well with the scaling form (seig. 8)

m = Mo(p — pc)”, (6.3)
with
Mg = 1245+ 0.07. (6.4)

Also the first excited state seems to follow the same power law as expected, though the
errors are rather big. Its maM{) is about twiceMy.

Such a behaviour is very different from the one observed in the standard two-point
correlation function of the percolation problem, defined as the probalalify, ") that
the sitest andx’ are in the same clustéThe corresponding connected, zero-momentum,

3 This quantity is directly related to the correlatorgin> 1 limit of the g-state Potts model, see for instance
Ref.[18], p. 156.
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Fig. 8. The mass of the lowest state as a functiop o a simple cubic bond percolating lattice. The dashed
curve is a one-parameter fit to H§.3).

projection

C(t) =Y [G(0.%) — G(0,00)], (6.5)

X,y

exhibits a single exponential behaviour with a mass term which coincides, within the nu-
merical accuracy, with that of the lowest energy state coupled to the plaquette operator
(seeFig. 7). This indicates that the standard cluster correlator couples only to the lowest
glueball, while the new observables suggested by the gauge theory interpretation of the
percolation disclose a totally unexpected spectrum of physical states.

The lightest spinning glueball is the Ztate. It can be observed in the exponential decay
of the correlation function of the operator

% (1) =Y [la(x, y, 1) — La(x, y. )] (6.6)

X,y

A difficulty encountered in this case is that the signal is drowned within the statistical noise
for values oft beyond three or four lattice spacings. In spite of this accuracy problem, one
can still verify that in a SC bond lattice the scaling fo(f3) is approximately obeyed
with an amplitude

M+ =80+ 10. (6.7)

In order to have more accurate results on the mass spectrum the basis of the operators
should be enlarged to Wilson loops of different shapes, trying to enhance their overlap
with the glueball states.
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7. Deconfinement at finite temperature

In quantum field theory the concept of temperature is introduced by simply compactify-
ing the Euclidean time direction and identifying the inverse temperature with the temporal
extension of the space—time manifold. Lattice field theories at a tempeffatane formu-
lated in a slab which is infinite in the spatial dimensions, but of finite ledgthl/ T (in
lattice spacing units) and periodic in the remaining temporal direction.

In any confining gauge theory there is a critical temperalurabove which the system
is deconfined in the sense that fBr> T, the string tensiorr vanishes. In this section
we demonstrate that the same phenomenon also occurs in random percolation. In the latter
case the deconfinement mechanism is particularly transparent, showing its purely geomet-
ric origin: non-vanishing string tension requires an infinite, percolating, cluster. Shrinking
the width of the slab reduces the number of possible percolating paths along the spatial
directions until the infinite cluster crumbles away, yielding a vanishing

To put it in different terms, note that as the temperature varies from zero to infinity a
three-dimensional system is gradually dominated by two-dimensional behaviour; in partic-
ular the percolation threshold is a decreasing function of the space dimensions. For instance
in the SC bond lattice & = 0 the percolation threshold is at (D = 3) = 0.2488. .. (see

Table 9. At T = oo the system reduces to a square lattice, whek® = 2) = % hence

heating a system which at zero temperature lies in the percolating phase wh%] in-
evitably undergoes a deconfinement transition at a finite temperBture

In order to estimaté, in various site or bond percolation lattices we considered a slab
of size Ly x L, x £ with L, = L, = L > £ and periodic boundary conditions in all di-
rections (se&ig. 9). We calculated the probabilit®; (p) for a cluster to wrap around one
of the large dimensions. Wrapping probabilities can be defined in different ways: wrap-
ping around thex direction, around the direction, around either direction, around both

1 T T

L=100 L=60
R L
05F
0 Y :
0.335 0.345 P 0.355 0.365

Fig. 9. The wrapping probabilit®; in a simple cubic site percolating lattice foe= 7 andL = 60, 70, 100. The
vertical arrow denotes the estimated valugpfat L = oo and the horizontal line indicates the exact planar value
of Reo.
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directions, etc. To be definite, we consider wrapping around tilieection. For largd. it
coincides with the probability that the system percolates along

We evaluatedR; (p) using a very efficient algorithm described by Newman and
Ziff [19]. For a bond percolation problem it consists of repeatedly adding a random bond
to an initially empty lattice, identifying the clusters joined by the bond and merging them
if they are different. At each step one checks whether the touched cluster wraps around
x using a clever method described in R0]. The process stops as soon as a wrapped
cluster is detected. In this way one can evaluate the probabllityz) that a random con-
figuration withn occupied bonds is wrapping arouiid for anyn < N, whereN is the
total number of bonds of the lattice. This method may be adapted to site percolation in a
straightforward way. Then one simply finds the required quaityp) for any value of
p by convolution with the binomial distribution

N n —n
RL(p)=Z<n>p L-pNToLm). (7.2)
Fig. 9 shows some examples & (p) in the case of SC site percolating lattice. In the
L — oo limit this wrapping probability becomes a step function. We have

0 forp < py,

ROO(p)Z{l for p > py,

where the threshold value = p, depends on the type of lattice and on its widtiwhen

L = oo the slab system is equivalent to a 2D torus, where the wrapping probability at
criticality has been calculated exactly by Pingat] and isR(p¢) = 0.521058290. ..

We can use his result to measure the valugoin a slab of width¢ by finding the value

of p for which

R1(p) = Roo(pe). (7.3)

This method was first applied in the case of the Ising model in R (with the
appropriate value oR.,, of course). These estimates in the case of 2D percolation turn
out to scale particularly well with the system size: Newman and Ziff argued that in planar
lattices the leading order finite size correction goes like

(7.2)

p=pe+cl FY2=p,pep VA (7.4)

wherevy = % is the thermal exponent of 2D random percolation.

We checked it in the slab geometry finding good agreementftarge enough, as
Fig. 10shows in the case of a slab of width= 6.

We estimated in this way the threshabd for seven different lattices. The results are
reported inTable 2 The slab widths (or equivalently the inverse temperatures) were chosen
in such a way that the values of lie in the scaling region of the string tensien as
determined in SectioB. In this manner we were able to evaluate also the rgtj0/c
using the amplitudes ofable 1 It turns out that these ratios for different lattices and
widths are clearly compatible with a common value, as required by universality (see last
column ofTable 2.

In (d + 1)-dimensional field theory at finite temperature there is a characteristic inter-
play betweeni + 1 andd critical behaviours. This is particularly evident in the present
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Fig. 10. Finite-size scaling of the estimated— oo value of p, for bond percolation in a slice of SC lattice of
sizeL x L x 6 with 32< L < 80. Each point corresponds to aboud infigurations. The solid line is a fit to
Eq.(7.4).

Table 2
The critical p, for different lattices at different temperatures and the corresponding universal#tie as
obtained by combining Eq¢5.4) and (7.5)Errors in parenthesis affect the last digits

Lattice YT e Te/AJo

SC site 7 08345951412 1.494(11)
BCC bond 3 (2111301838) 1.497(10)
BCC bond 4 023516859) 1.506(11)
SC bond 5 @®781025) 1.480(12)
SC bond 6 @®7238Q2) 1.492(13)
SC bond 7 @®684591) 1.500(13)
SC bond 8 ®6561%5) 1.504(14)

instance: thep, values are extracted through a 2D percolation power(lav) in order
to take into account the finite size scaling tied/itoHowever the tower op, values as a
function of the width¢ obeys a typical power law of 3D percolation:

1

—pe 4 —— 7.5

wherev indicates, as in all the other formulae of this paper, the thermal exponent of 3D
percolation,p,. is the critical threshold as listed ifable 1and the amplitudd,. depends

on the kind of latticeFig. 11shows the foup, values of the bond SC lattice as a function

of £~V A one-parameter fit to E7.5)yields

7. = 4.45+ 0.02 (7.6)

It should be noted parenthetically that, as thés are essentially two-dimensional quanti-
ties, they can be evaluated with high precision. Comparison bethad#as 1 and 8hows
that in some cases the level of precision of those overcomes that of the best estinpates of
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Fig. 11. Finite-size scaling gf, as a function o£~1/”, where¢ is the width of a SC lattice in bond percolation.
The solid line is a one-parameter fit to E@.5). The statistical errors are much smaller than the symbol size.

Moreover, with a modest additional computational effort, it would be possible to further
improve their precision. Thus one could perhaps envisage to apply systematicdlfyEq.
to improve the estimates ¢f. and/orv.

8. Universality class of deconfinement

The deconfined phase of ay + 1)-dimensional gauge theory at finite temperature
is characterized by the vanishing of the string tengiorThe interaction between static
sources (quarks) is described in terms of Polyakov operators. These are straight Wilson
loops wrapped around the short periodic directigaeeFig. 12. The Polyakov—Polyakov
correlator{P(0) P(R)) of two parallel Polyakov operators only depends on their relative
positions in the/-dimensional sub-lattice. At the deconfining point it is expected to obey
a power law dictated by the universality class of the transition.

The critical behaviour of gauge theories at the deconfining temperature is well described
by the Svetitsky—Yaffe (SY) conjectuf23] which can be formulated as follows. Suppose
a (d + 1)-dimensional gauge theory with gauge gradphas a second-order deconfine-
ment transition at a certain temperatdie then its universality class is the same of the
order—disorder transition of @&dimensional spin system with a global symmetry group
coinciding with the center of the gauge group. In particular, the Polyakov—Polyakov corre-
lator corresponds to the spin-spin correlator of sudhdimensional system. Therefore, at
the critical point, it should decay as

const

m, (8.1)

(PO PR))=

wheren is the magnetic exponent of the spin model. The validity of this conjecture has
been well established in a large number of numerical studies.
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L

Fig. 12. The slab geometry of the finite temperature setting. The two thick lines represent two Polyakov loops
wrapping in the periodic temperature direction.

~R—

Fig. 13. The dashed lines represent the 1D section of the four topologically different surfaces bounded by the two
Polyakov loops (solid circles) in the case of periodic bc.

In the present case the above conjecture requires some generalization, owing to the fact
that not only the center, but the whole gauge group is trivial. Actually the SY conjecture
is somehow related to the dimensional crossover in a layered lattice siZterithe uni-
versality class of such a system, as it approaches a critical point, depends on the number
of spatial directions which are going to infinity in the thermodynamic limit. This simple
observation provides the basis for arguing that the critical behaviour of percolation in a
slab of finite thickness is well described by the 2D percolation universality class. This is
also supported by the fact that finite size scaling of threshold probapiliig driven by
the thermal exponenk, as Eq(7.4)andFig. 10show.
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Fig. 14. Polyakov—Polyakov correlator at deconfining temperature as a function of the scaling vAfidble
wheren = 2% is the magnetic exponent of 2D percolation. The lattice size isx2200 x 6. The solid line is a

one-parameter fit to E§8.1) of the data withR > 2. The resultingxz/d.o.f. is 0.46.

Such a conclusion is much less obvious, and more interesting, when considering the
Polyakov—Polyakov correlator. This quantity can be evaluated using exactly the same
method described in Sectid@for the Wilson loops. One simply has to take into account
that in the Wilson loop the surfacE (seeFig. 3) used to evaluate cluster wrapping is a
rectangle, while in the latter case is a cylinder bounded by the two Polyakov lines. Periodic
boundary conditions put into play another difference: there are now four topologically dif-
ferent surfaces bounded by the two Polyakov lines [8gel3), hence the correlator must
be written as the sum of these four contributions. When the distArmetween Polyakov
lines is much smaller than lattice siZethe main contribution comes from the top two
surfaces ofig. 13

One instance is reported Fig. 14 where we plot the estimated Polyakov—Polyakov
correlator extracted from f@onfigurations in a 208 200 x 6 lattice at the critical value
of ps as determined ifTable 2 Plotting these data versug " with n = 2—511 shows lin-
ear behaviour, as expected for a critical system which lies in the universality class of 2D
percolation.

9. Conclusions

We have studied some consequences of a new point of view in three-dimensional ran-
dom percolation which allows us to reinterpret it as a full-fledged gauge theory.

A key difference between the conventional and the present approach is that instead of
studying the universal scalings through the size distribution of random clusters we only
consider their topological entanglement with suitable closed paths. This suggests a refor-
mulation in the language of gauge theory. In this context a more detailed description of 3D
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percolation universality class emerges as a major issue: the gauge-percolation dictionary
leads to define new physical quantities that can be used to extract new universal amplitude
ratios.

A typical example is the rati(TCz/o between the (square of) deconfining temperature
T, and the string tensiom. We evaluated it on seven different lattices ($able 2 finding
excellent agreement with universality. Notice that neitfienor o are truly foreign con-
cepts of percolation theory: slab percolation has always been a subject of intensive study.
We have seen that string tension is strictly related to the surface tension, which is also
defined in percolatiof8]. The novelty introduced by the gauge theory interpretation is a
previously unsuspected relationship between slab percolation and surface tension.

Another class of universal amplitude ratios came to us as a surprise. It turns out that the
Wilson loop correlators receive contribution from a tower of physical states of increasing
mass and spin, like in ordinary gauge theories. The ratios of their masses define universal
quantities which further characterize the universality class of 3D percolation.

Transcribing percolation into gauge theory language has also some interesting conse-
guences in the study of quark confinement mechanisms. The confinement generated by
a random percolating cluster is similar, but not identical, to that produced by an infinite
network of center vortices. In particular the latter carries some conserved charge which
regulates their mutual intersections, while the former does not carry any conserved charge
and intersects freely. This indicates that the intersection rules of center vortices do not play
an important role in producing confinement.

One of the most surprising findings of the present approach is the observation of some
universal shape effects in the vacuum expectation value of Wilson loops which have been
always ascribed to a different picture of confinement. This picture says that the flux of the
gauge field generated by pair of quarks is squeezed by the magnetic monopole condensate
into a string-like structure which can vibrate freely. It turns out that these very vibrations
generate the universal effects mentioned above. Apparently, the two different pictures of
confinement are different descriptions of the same physical phenomenon.

It would be interesting to extend our percolation approach to a 4D gauge theory. This
would require the study of plaquette percolation and the Wilson loops should measure their
entanglement with closed surfaces.
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