170 research outputs found

    Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates

    Get PDF
    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEDSCAPE, a recently modified gap model designed for cultivated land mosaics in the Great Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths flight changes as the selected resulting factor) using current climate data and nested regional circulation models (RegCMs). Results indicated that ( i ) it took 70-80 simulation years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (ii) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass, but increase dominance in the linear forests, especially in the upland forests; (iii) linear forests with higher planting species richness and smaller width produced higher aboveground tree biomass per unit area; and (iv) the same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements (e.g., the effects of understory species should be included), the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems

    Estimating carbon storage in windbreak trees on U.S. agricultural lands

    Get PDF
    Assessing carbon (C) capture and storage potential by the agroforestry practice of windbreaks has been limited. This is due, in part, to a lack of suitable data and associated models for estimating tree biomass and C for species growing under more opengrown conditions such as windbreaks in the Central Plains region of the United States (U.S.). We evaluated 15 allometric models using destructively sampled Pinus ponderosa (Lawson & C. Lawson) data from field windbreaks in Nebraska and Montana. Several goodness-of-fit metrics were used to select the optimal model. The Jenkins’ et al. model was then used to estimate biomass for 16 tree species in windbreaks projected over a 50 year time horizon in nine continental U.S. regions. Carbon storage potential in the windbreak scenarios ranged from 1.07 ± 0.21 to 3.84 ± 0.04 Mg C ha-1 year-1 for conifer species and from 0.99 ± 0.16 to 13.6 ± 7.72 Mg C ha-1 year-1 for broadleaved deciduous species during the 50 year period. Estimated mean C storage potentials across species and regions were 2.45 ± 0.42 and 4.39 ± 1.74 Mg C ha-1 year-1 for conifer and broadleaved deciduous species, respectively. Such information enhances our capacity to better predict the C sequestration potential of windbreaks associated with whole farm/ranch operations in the U.S

    Estimating carbon storage in windbreak trees on U.S. agricultural lands

    Get PDF
    Assessing carbon (C) capture and storage potential by the agroforestry practice of windbreaks has been limited. This is due, in part, to a lack of suitable data and associated models for estimating tree biomass and C for species growing under more opengrown conditions such as windbreaks in the Central Plains region of the United States (U.S.). We evaluated 15 allometric models using destructively sampled Pinus ponderosa (Lawson & C. Lawson) data from field windbreaks in Nebraska and Montana. Several goodness-of-fit metrics were used to select the optimal model. The Jenkins’ et al. model was then used to estimate biomass for 16 tree species in windbreaks projected over a 50 year time horizon in nine continental U.S. regions. Carbon storage potential in the windbreak scenarios ranged from 1.07 ± 0.21 to 3.84 ± 0.04 Mg C ha-1 year-1 for conifer species and from 0.99 ± 0.16 to 13.6 ± 7.72 Mg C ha-1 year-1 for broadleaved deciduous species during the 50 year period. Estimated mean C storage potentials across species and regions were 2.45 ± 0.42 and 4.39 ± 1.74 Mg C ha-1 year-1 for conifer and broadleaved deciduous species, respectively. Such information enhances our capacity to better predict the C sequestration potential of windbreaks associated with whole farm/ranch operations in the U.S

    SPATIAL MODELING OF BIOMASS IN NEBRASKA WINDBREAKS

    Get PDF
    Field windbreaks have the potential of sequestering large amounts of carbon. Predicting how much carbon would be sequestered in a newly planted windbreak after ten or more years is of interest. The amount of carbon in a tree depends on its biomass. In a pilot study of Nebraska windbreaks, a Markov random field was used to predict the biomass of green ash in windbreaks as a function of soil and climate conditions. The spatial dependence parameter was significantly different from zero, indicating the presence of small scale variation. In addition to age, the 30 year average summer precipitation and the windbreak growth condition code were included in the final model. Future directions for improving the model are discussed

    Relict periglacial soils on Quaternary terraces in the central Ebro Basin (NE Spain)

    Get PDF
    Pedofeatures associated with ancient cold climatic conditions have been recognized in soils on terraces in the Monegros area (central Ebro Basin, Spain), at a latitude of 41°49′N and an altitude of 300 m a.s.l. Eleven soil profiles were described on fluvial deposits corresponding to the most extensive terrace (T5) of the Alcanadre River, Middle Pleistocene in age (MIS8–MIS7). Each soil horizon was sampled for physical, chemical, mineralogical and micromorphological analyses. Macromorphological features related to pedocryogenic processes were described: involutions, jacked stones, shattered stones, detached and vertically oriented carbonatic pendents, fragmented carbonatic crusts, laminar microstructures, succitic fabric, silt cappings on rock fragments and aggregates, and irregular, broken, discontinuous and deformed gravel and sandy pockets. Accumulations of Fe–Mn oxides, dissolution features on the surface of carbonatic stones, and calcitic accumulations were identified related to vadose–phreatic conditions. The observed periglacial features developed under cold environmental conditions in exceptional geomorphic and hydrological conditions. This soil information may have potential implications in studies of paleoclimate in the Ebro Valley as well as in other Mediterranean areas

    Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.</p> <p>Results</p> <p>Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.</p> <p>Conclusions</p> <p>This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.</p
    corecore