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Abstract Assessing carbon (C) capture and storage

potential by the agroforestry practice of windbreaks

has been limited. This is due, in part, to a lack of

suitable data and associated models for estimating tree

biomass and C for species growing under more open-

grown conditions such as windbreaks in the Central

Plains region of the United States (U.S.). We evaluated

15 allometric models using destructively sampled

Pinus ponderosa (Lawson & C. Lawson) data from

field windbreaks in Nebraska and Montana. Several

goodness-of-fit metrics were used to select the optimal

model. The Jenkins’ et al. model was then used to

estimate biomass for 16 tree species in windbreaks

projected over a 50 year time horizon in nine conti-

nental U.S. regions. Carbon storage potential in the

windbreak scenarios ranged from 1.07 ± 0.21 to

3.84 ± 0.04 Mg C ha-1 year-1 for conifer species

and from 0.99 ± 0.16 to 13.6 ± 7.72 Mg C ha-1

year-1 for broadleaved deciduous species during the

50 year period. Estimated mean C storage potentials

across species and regions were 2.45 ± 0.42 and

4.39 ± 1.74 Mg C ha-1 year-1 for conifer and broad-

leaved deciduous species, respectively. Such infor-

mation enhances our capacity to better predict the C

sequestration potential of windbreaks associated with

whole farm/ranch operations in the U.S.

Keywords Climate change � Agroforestry �
Allometric models � Tree biomass � Carbon storage �
Open-grown trees

Introduction

Agroforestry systems represent an appealing manage-

ment strategy to increase the ecological and environ-

mental services obtained from agricultural lands (Rani

et al. 2008). Included in these services are the capacity

of these practices to mitigate greenhouse gases

(GHGs) by sequestering carbon (C) while providing

climate adaptation services that may add resiliency to

our food systems and agricultural lands (FAO 2010;

Schoeneberger et al. 2012).
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In agroforestry systems, trees and shrubs can

increase the amount of C stored above- and below-

ground within agricultural operations compared to a

monoculture crop field or pasture (Sharrow and Ismail

2004; Kumar and Nair 2011). These systems may

contribute to reducing atmospheric carbon dioxide

(CO2) while maintaining and potentially increasing

soil productivity (Nair et al. 2009). From these

systems, windbreaks planted on just 3–5 % of agri-

cultural lands, may reduce the emissions of CO2 and

nitrate (NO3) from farming (Brandle et al. 1992) while

increasing crop yields (Kort 1988). Owing to the

characteristics of this agroforestry practice to adapt to

and mitigate climate change, windbreaks have been

included as one of the tools in the Climate Smart

Agriculture Approach (FAO 2010).

Designing field windbreaks to address the various

issues from crop and livestock protection to GHG

mitigation and other services is relatively straightfor-

ward. The resulting biological, structural, spatial and

environmental characteristics of their components,

however, generate high levels of complexity that make

assessments of actual and potential functions difficult

(Raintree 1986). Extrapolation of results across indi-

vidual plantings, settings and regions can be mislead-

ing (Nair 2011). Likewise, the lack of reliable biomass

data from agroforestry systems (Jose et al. 2004)

makes it difficult to approximate windbreak contribu-

tions in C budgets. Currently, there are several efforts

to develop consistent approaches to estimate C

contributions of different management activities in

agricultural operations. They range from compilation

of accepted methodologies (Ogle et al. 2014) to

incorporation into tools like COMET-Farm (http://

cometfarm.nrel.colostate.edu/), a voluntary C report-

ing tool. Inclusion of agroforestry practices, like

windbreaks, in these efforts requires that consistent

and valid methods be developed that estimate the C

storage potential of windbreaks.

The Forest Inventory and Analysis (FIA) program

of the U.S. Department of Agriculture, Forest Service

(www.fia.fs.fed.us) provides an extensive and publicly

available database (http://apps.fs.fed.us/fiadb-

downloads/datamart.html) for use in determining the

extent, condition, volume, and growth of forestlands in

the U.S. (USDA-FS 2014). This inventory may serve

as a baseline to obtain above- and belowground bio-

mass and C storage potential for windbreak tree spe-

cies. The main objectives of this study were to: (1)

assess the suitability of various allometric models for

estimating tree biomass under the more open-grown

conditions associated with windbreaks and (2) develop

a methodology for estimating the C storage potential

of windbreaks on agricultural lands in the U.S.

Materials and methods

This study was carried out using inventory data from

the FIA program, peer-reviewed literature and rele-

vant allometric models for the major U.S. ecoregions

(McNab et al. 2005) (Fig. 1) where windbreak use was

applicable. We selected 23 states of the continental

U.S. and grouped them into nine regions (Fig. 2) based

on three main criteria: (1) located in almost identical

Major Land Resource Areas (MLRA) (USDA-NRCS

2006), (2) sharing the same ecoregions (Bailey 1995;

USDA-FS 2014), and (3) having trees periodically re-

measured in the FIA data set (USDA-FS 2015).

Forest inventory data

We selected 16 tree species as suitable for windbreaks

in the different regions and grouped them into two

categories: conifer and broadleaved deciduous

(Table 1). These tree species were queried in the FIA

database (FIADB version 5.1) dataset. The FIA inven-

tory design, description of variables, field data collec-

tion, subsequent manipulation, uncertainties and the

FIADB are available at http://fia.fs.fed.us/library/

database-documentation/ (USDA-FS 2015). This data-

set included 276,849 tree records from 30,095 plots for

the selected tree species in the identified ecoregions.

Tree and site specific variables included in this

study were current and previous diameter at breast

height (dbh), 1.30 m, tree height (ht), and stand age as

a proxy for tree age. These data were used to obtain the

mean annual increment in diameter (MAID) as

MAID ¼ t:dia� t:prevdia

ds:remper
ð1Þ

where t.dia symbolizes current tree diameter, t.prevdia

denotes the previous tree diameter, and ds.remper

signifies the number of years between measurements.

The resulting datasets were used to predict biomass

stored in the respective tree species. The dataset was

then randomly subsampled once within the tree age

range of 10–50 years.
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Estimation of the tree biomass

The tree MAIDs were converted into biomass using

species-specific allometric models. The models were

selected according to the approximate age of the trees,

diameter range, and componentmeasured. In some cases,

when a specific model did not estimate belowground

biomass, the ratio (2) from Jenkins et al. (2003) was used

ratio ¼ e b0þ
b1
dbh

� �
ð2Þ

where ratio refers to the ratio of root component to

total aboveground biomass (dry weight) for trees

2.5 cm dbh and larger and b0 and b1 identify the

regression coefficients.

Case study with Pinus ponderosa

Eighteen P. ponderosa were destructively sampled

from windbreaks located in Montana and Nebraska.

Based on stem diameter distribution, trees of different

dbh and representative for the mean of their diameter

classes and covering a range of heights were selected

for the destructive study of aboveground biomass.

Samples taken from the stem at different lengths (dbh,

mid-stem, crown base) and branches (base, mid and

top) were weighed, labelled and packed for transport.

Dry mass of these components were determined after

oven-drying all samples at 65 �C, to a constant weight.
Tree biomass was recorded as the summed dry weight

of each tree component.

Twelve generic models from Spurr (1965),

Prodan (1968) and Loetsch et al. (1973), two new

models (one based on dbh and the other on dbh and

height) and Jenkins’ et al. coefficients for pines

(Table 2) were used to fit the relationships between

biomass and diameter/height of the P. ponderosa

samples.

Although dbh is currently used for most local or

regional biomass estimations, some researchers have

Fig. 1 Major ecoregions encompassing different sampled states

Agroforest Syst (2016) 90:889–904 891

123



suggested that both dbh and height should be

included for larger-scale application (e.g., Honer

1971; Crow 1978; Domke et al. 2012). As such, we

included height in our analysis of estimating biomass

in these open-grown trees. The new models used in

this study were called ‘‘this study model 1’’ and ‘‘this

study model 2’’ based on dbh and dbh and height,

respectively. When models with a log-transformed

response variable were present, predicted outputs

were back-transformed with a correction factor

(Eq. 3) following Sprugel (1983):

CF ¼ e SEE�2:303ð Þ2=2ð Þ ð3Þ

whereCF denotes correction factor, e indicates natural

logarithm base equal to 2.718282 and SEE corre-

sponds to standard error of the estimate. The CF

corrects for bias when log biomass estimates are back

transformed to the original arithmetic units.

Fig. 2 Distribution of ecoregions within regions selected for estimating carbon storage potential for windbreaks in the United States.

The regions without color (hollow) were not studied
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Statistical analysis

To detect differences in tree growth, MAIDs per tree

species were compared among ecoregions within

geographic regions using one-way ANOVA and the

adjusted Tukey test. When significant differences

appeared among ecoregions, we selected the ecore-

gion with the ‘‘mid-point’’ value for each species to

avoid under- and overestimation. The MAIDs were

converted to biomass by using generic allometric

models. The statistical analysis used SAS 9.3 (SAS

Institute Inc. 2014).

The biomass observations from the 18 destructively

sampled P. ponderosa trees (Table 3) were evaluated

against the biomass predictions from the 15 models

using the Model Selection Analysis (MSA) procedure

(Kutner et al. 2004). All models were fit in their basic

form and plotted to provide a visual assessment of the

relationships between biomass and the independent

variables. Least-square regression models were devel-

oped for individual variables, such as dbh and height,

using several curve forms, including simple linear,

second-order polynomial, and logarithmic models.

These regression models were tested for significance

on the basis of a ‘‘t’’ statistic (p\ 0.05), linearity,

homoscedasticity, normality and outliers (Kutner et al.

2004; Chatterjee and Hadi 2006). Constant variance

was tested using a Breusch–Pagan test (BP) (Kutner

et al. 2004). Finally, a Box-Cox transformation was

applied to determine the power of variable response

transformation for each regression model (Box and

Cox 1964). The regression analysis used R 3.11

(CRAN 2014).

Table 1 Tree species with potential for field windbreaks

Tree species Scientific name

Conifer tree species

Balsam fir Abies balsamea (L.) Mill.

Eastern white pine Pinus strobus L.

Eastern red cedar Juniperus virginiana L.

Loblolly pine Pinus taeda L.

Lodgepole pine Pinus contorta Dougl. Ex Loud.

Norway spruce Picea abies (L.) Karsten

Ponderosa pine Pinus ponderosa Dougl. Ex Laws.

Scotch pine Pinus sylvestris L.

Broadleaved deciduous tree species

American elm Ulmus americana L.

Bur oak Quercus macrocarpa Michx.

Eastern cottonwood Populus deltoides Bartr. Ex Marsh.

Hackberry Celtis occidentalis L.

Green ash Fraxinus pennsylvanica Marsh.

Northern red oak Quercus rubra L.

Southern red oak Quercus falcata Michx.

White oak Quercus alba L.

Table 2 Generic and

published allometric

equations for estimating

aboveground biomass of P.

ponderosa

Source Spurr (1965),

Prodan (1968), Loetsch

et al. (1973)

bm biomass, dbh diameter

at breast height (1.3 m), ht

total height (m), a, b, c, d,

e regression coefficients, ln

natural logarithm base,

e 2.718282, log common

logarithm base 10

Author Allometric equations

(1) Berkhout bm ¼ aþ bðdbhÞ
(2) Spurr (1952) bm ¼ aþ bðdbhÞ2

(3) Spurr.mod (1952) bm ¼ aþ bðdbhÞ2 þ cðhtÞ
(4) Stoate bm ¼ aþ bðdbhÞ2 þ cðdbhÞ2ht þ dðhtÞ
(5) Hohenadl-Krenn bm ¼ aþ bðdbhÞ þ cðdbhÞ2

(6) Meyer (1953) bm ¼ aþ b dbhð Þ þ c dbhð Þ2þd dbhð Þht þ eðhtÞ
(7) Kopezky bm ¼ aþ bðdbhÞ2

(8) Meyer (mod.) (1953) bm ¼ aþ b dbhð Þ þ c dbhð Þ2þd dbhð Þ2ht þ e dbhð Þht
(9) Naslund bm ¼ aþ bðdbhÞ2 þ cðdbhÞ2ht þ d dbhð Þht2 þ eðdbhÞ2

(10) Berkhout. Husch logðbmÞ ¼ logðaÞ þ bðlogðdbhÞÞ
(11) Brenac logðbmÞ ¼ aþ bðln dbhð Þ þ cð1=dbhÞ
(12) Schumacher–Hall (1933) logðbmÞ ¼ logðaÞ þ bðln dbhð Þ þ cðlogðhtÞ
(13) This study 1 sqrt bmð Þ ¼ aþ dbh

(14) This study 2 sqrt bmð Þ ¼ aþ dbhþ ht

(15) Jenkins et al. (2003) bm ¼ eðaþb ln dbhÞ

Agroforest Syst (2016) 90:889–904 893
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Allometric models: dbh-height based

Power functions (Eq. 4) were used for the log-

transformed variables (Fahey and Knapp 2007):

Y ¼ aXb þ e ð4Þ

where Y is oven-dry mass (kg), X is a tree dimension

variable (dbh or ht), a, and b are parameters and e is a
random normally distributed additive error term with

constant variance (Picard et al. 2012). The power

function was derived as log-model (Eq. 5) and used in

some generic models:

bm ¼ log aþ bðlogðdbhÞÞ ð5Þ

where bm is the response variable of the total

aboveground biomass, dbh is the explanatory vari-

ables for dbh and a and b are the parameters of the

model.

The models were evaluated with Akaike’s informa-

tion criterion (AIC), predicted residual sum of squares

(PRESS), adjusted R2, and variance inflation factor

(VIF). The Furnival index (FI) (Furnival 1961) model

(Eq. 6) was used to compare models with different

response variables following Parresol (1999):

FI ¼ 1

f 0ðYÞ½ �
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð6Þ

where f0 (Y) is the first derivative of the transformation

function with respect to Y; the square bracket ([�]) is
the geometric mean andMSE is the mean square error

of the fitted model.

The type of transformation required for different

cases of the response variable are displayed in Table 4.

Models with lower AIC, RSE, PRESS, VIF and FI and

higher adjusted R2 values were selected for further

evaluation. These information criteria prevented us

from under- and over-fitting models (Nakamura et al.

2005) while variable transformation allowed us to

adjust the residuals for normality, linearity and

homoscedasticity, and to choose the most parsimo-

nious model (Kutner et al. 2004). Generally, the

information criteria analyzed selected the models with

best fit which were further validated.

Validation process

This process was based on an approach by Dietz and

Kuyah (2011) to develop allometric models using the

18 P. ponderosa trees. The models were developed as

follows: from the 18 trees, one tree was randomly

selected and pulled out, the remaining 17 trees were

used to develop the coefficients for each model. This

process was repeated six times with different

Table 3 Biomass for

destructive sampled P.

ponderosa in Nebraska and

Montana

MTPP Ponderosa pine trees

sampled on Nebraska,

NEPP Ponderosa pine trees

sampled on Nebraska

Tree no. Height (m) Age (years) DBH (cm) Biomass (kg)

MTPP01_03 10.8 42 23.4 128.9

MTPP01_07 4.7 18 13.6 49

MTPP01_14 6.6 29 26.5 262.6

MTPP01_23 9.6 54 27 221.2

MTPP02_09 6.9 28 15.3 36.6

MTPP02_10 7.9 29 17.1 45.9

NEPP01_08 7.6 16 18.9 92.4

NEPP02_01 13.2 40 40.4 755.7

NEPP02_08 7.9 15 15.1 45.2

NEPP02_10 6.5 16 17.8 92.9

NEPP02_13 7.1 16 15.2 68.3

NEPP02_20 6.8 16 19.7 139.2

NEPP02_22 6.3 37 17.8 92

NEPP02_27 12.7 39 41.7 747.6

NEPP02_35 9.2 21 31.2 285.5

NEPP02_40 12.9 39 24.8 279.6

NEPP02_43 9.6 21 23.8 173

NEPP02_56 12.4 40 31.9 406.5

894 Agroforest Syst (2016) 90:889–904
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selections such that the six trees in the sample were

used once for validation with all models. The final

coefficients for each model were the average of the

coefficients from the different runs. To determine the

predictive accuracy of these models, the error between

the predicted biomass and the true biomass measured

for each tree was calculated according to Chave et al.

(2005):

Error ¼ Predicted bm�Measured bm

Measured bm
ð7Þ

From these validation procedures, the Jenkins’s

et al. model was the model with the lowest error in the

estimates (best fit) for predicting biomass of P.

ponderosa.

After evaluating these models, we chose the Jenkins

et al. (2003) model and coefficients to estimate

biomass and C storage for the different species of

pines in this study. The agreement between Jenkins

et al. (2003) predictions and the observations in this

study indicate that these coefficients are the best

available at this time to develop biomass estimates for

pines used in windbreaks. In this study, we used the

coefficients developed for broadleaved trees by Jenk-

ins et al. and estimated the potential of these trees for

storing C in the continental U.S.

These biomass estimates were converted to C by

using conversion factors of 0.48 and 0.51, for broad-

leaved deciduous and conifer trees respectively (Lam-

lom and Savidge 2003). These trees were grouped into

broadleaved deciduous and coniferous tree species by

region. Finally, these values were expanded to a per-

unit-area (ha) basis by using a one-row windbreak

with a width of 3 m (USDA-NRCS 2009). This

windbreak was monospecific, 1111 conifers, or 2525

small conifers (Juniperus virginiana L.), trees per ha,

respectively.

Sources of error

There are several potential sources of error inherent in

estimating forest biomass at large scales using

published biomass equations. Measurement, sam-

pling, model parameter, and model selection errors

are all potential sources of uncertainty that must be

considered when developing new biomass models or

using existing models. Furthermore, published models

are often used to predict biomass for trees outside the

range (e.g., diameter, species or species-group, geo-

graphic) of the original data used to develop the

model. This extrapolation may represent an additional

source of uncertainty that must be considered when

applying biomass models from the literature.

Results

Suitability of allometric models for estimating

biomass

Comparing different allometric models using data

from the destructively sampled ponderosa pine in NE

and MT, five models fit the data reasonably well

(Table 5). The models of Berkhout and Husch (n.d.)

(Model #10), Schumacher and Hall (1933) (Model

#12), ‘‘This study model 1’’ (Model #13), and ‘‘This

study model 2’’ (Model #14) had the best fits.

Although the Brenac (n.d.) (Model #11) fit well, it

was excluded from the next step because it had high

VIF. An elevated value of VIF ([10) indicates that the

predictor variables being considered in the regression

model are highly correlated among themselves (Kut-

ner et al. 2004).

The next step consisted of evaluating four models

(#10, #12, #13 and #14 in Table 5) which had the

highest adjusted R2 and lowest RSE, AIC, PRESS,

VIF, and FI criterion. The selected models included a

square root response variable with and without height

as explanatory variables and a log transformed

response variable. Among these information criteria

FI (Furnival 1961; Parresol 1999; Schreuder and

Williams 1998) was preferred because it allows

comparing models with different response variables

and reduces the usual estimate of the standard error

about the curve when the dependent variable is

biomass (Parresol 1999). Finally, to define the accu-

racy of these models for predicting biomass, a

Table 4 Reciprocal of the first derivative of the transformed

dependent variables for Furnival index calculation

Response variable type ((Y0)-1)

log (Y) 2.3026 9 Y

ln (Y) Y

Yk 1/(kYk-1)

1/Y -Y2

Y1/2 2 9 Y1/2

Source Alder (1980) complemented and adapted for Segura

and Andrade (2008)

Agroforest Syst (2016) 90:889–904 895
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validation test was carried out according to Picard

et al. (2012) and Kutner et al. (2004).

In the validation process (Table 4), Jenkins’ et al.

generalized model (Model #15) was included to test

the relationship between the overestimation reported

for forest stands (Zhou and Hemstrom 2009; Domke

et al. 2012; Chojnacky et al. 2014) and the biomass

estimates for open-grown trees.

The models validated included log- and square

root-transformed response variables with and without

height. Figure 3 displays the predicted values of all

five competing models. These results suggest that all

these models are good estimators of the P. ponderosa

biomass. However, in the validation process

(Table 6), Jenkins’ et al. model showed the lowest

percentage of error (0.45 %) and higher adjusted R2

(98.7 %).

The models #13, #14 and Jenkins et al. (#15) were

evaluated again, including the adjustment made by

Chojnacky et al. (2014) to Jenkins et al., using data

from FIA and destructively sampled P. ponderosa, in

NE, MT, ecoregions 331, and 332, projected to

50 years. These biomass estimates were consistent

with predictions from models #13, #14 and Jenkins

et al. (Table 7). However, when compared to the

adjusted Jenkins’ et l. models proposed by Chojnacky

et al. (2014) the differences were substantial, espe-

cially for trees with specific gravity greater than 0.40.

There were notable differences when comparing these

predictions between states and ecoregions, this may be

attributed to larger diameter P. ponderosa trees in

Nebraska than in other states. These differences

between the estimates could have been a result of

the way these trees were selected and the performance

of these trees in different ecoregions. Trees in NE

showed a dbh ranging from 15.09 to 41.72 cm, which

is higher when compared to MT (13.57–27.00 cm),

ecoregion 331 (19.81–29.21 cm), and ecoregion 332

(16.76–25.91 cm).

Table 5 Goodness-of-fit

statistics for the

aboveground tree biomass

equations

Number Author R2 RSE AIC PRESS VIF FI

1 Berkhout 0.914 64.39 206.9 105,587.6 2.88 66.50

2 Spurr 0.9293 58.47 202.26 82,148.7 15.18 58.47

3 Spurr.mod 0.9783 32.37 182.4 35,252.5 15.0 32.37

4 Stoate 0.977 33.36 182.82 38,746.58 53.0 162.92

5 Hohenadl-Krenn 0.9698 38.21 186.95 33,974.85 42.78 186.61

6 Meyer (1953) 0.9748 34.88 185.09 40,955.98 362.96 186.61

7 Kopezky 0.9644 41.42 186.95 33,974.9 1.0 41.42

8 Meyer. mod 0.9781 32.52 183.13 35,711.2 1002.9 32.52

9 Naslud 0.997 18.81 159.59 9361.2 6542.9 18.81

10 Berkhout. Husch 0.9371 0.2346 2.76 1.08 1.0 1.15

11 Brenac 0.9329 0.2422 4.76 1.23 41.58 1.18

12 Schumacher–Hall 0.9357 0.2372 4.0 1.26 2.83 1.16

13 This study 1 0.9597 1.317 64.88 34.3 1.0 1.79

14 This study 2 0.9571 1.359 66.84 45.33 2.88 1.85

15 Jenkins 0.987 0.2537 – – – –

Fig. 3 Allometric equations fit from the relationships of total

above-ground biomass (kg) against dbh

896 Agroforest Syst (2016) 90:889–904

123



Carbon storage potential for windbreaks trees

in different regions

Carbon storage potential for windbreak trees as

determined by the different allometric models showed

high variability across regions. The Jenkins’ et al.

coefficients gave the most consistent estimates in this

research. For this reason, we decided to use only

Jenkins’ et al. coefficients to report estimates of C

storage for all species. The mean estimated C storage

potentials across the regions were 4.39 ± 1.7 Mg

C ha-1 year-1 for broadleaved deciduous species and

2.45 ± 0.4 Mg C ha-1 year-1 for conifers (Table 8).

Both broadleaved deciduous and conifer species

displayed the highest C storage potential,

13.6 ± 7.72 and 3.84 ± 0.04 Mg C ha-1 year-1

respectively, in the Southern Plains region, over a

50 year period. The estimate for broadleaved decid-

uous trees was high because the data set includes

cottonwood, a much larger species than any of the

others in the study.

Discussion

The low variability of the trees’ MAIDs among

ecoregions indicated that most species are growing

within their natural range (Wells 1964; Burns and

Honkala 1990; USDA-NRCS 2015) and that the

ecoregions are commonly occupied by trees growing

naturally (USDA-NRCS 2015). The variations in

some MAIDs were due to extreme climatic conditions

and soil types within regions (e.g., ecoregions 315 and

231 in southern Plains).

Tree growth in forests, fields, or otherwise is not

linear (Lutz 2011). Instead, their cumulative growth

curves (CGC) are commonly sigmoidal in that they

generally grow rapidly during early stages of devel-

opment and eventually reach a growth maximum

which is dependent on species traits and growing

conditions. Stephenson et al. (2014) questioned the

leveling-off conclusion for individual trees and pro-

posed that tree biomass accumulation continuously

increased with tree size, and that old growth trees can

Table 6 Coefficients and mean error in the estimates of the competing models after validation

Number Model a b c R2 Error (%)

10 Berkhout & Husch -3.212 2.641 – 0.934 5.74

12 Schumacher & Hall -3.221 2.851 -0.301 0.937 6.99

13 This study 1 -4.363 0.754 – 0.960 3.46

14 This study 2 -4.341 0.756 -0.009 0.957 3.10

15 Jenkins -2.536 2.435 0.987 0.45

17 trees for training and 1 tree for testing; repeating 6 times for each model

Table 7 Aboveground biomass estimates for P. ponderosa using the selected allometric models projected to 50 years

Model Destructive sampling (kg tree-1) FIA dataset (kg tree-1)

NE MT 331 332

This study 1a 659.35 ± 4.10 218.90 ± 5.94 255.68 ± 7.38 260.09 ± 7.18

This study 2b 676.35 ± 3.98 225.46 ± 5.72 262.30 ± 7.18 267.02 ± 6.97

Jenkins 2003 661.17 ± 1.30 221.13 ± 0.82 256.23 ± 0.56 260.45 ± 0.59

Chojnacky 1c 667.73 ± 1.24 223.74 ± 0.78 259.71 ± 0.52 264.04 ± 0.56

Chojnacky 2d 863.74 ± 0.99 262.65 ± 0.60 308.26 ± .39 313.79 ± 0.42

a Local model based on dbh
b Local model based on dbh and height (ht)
c Adjustment made to Jenkins et al. equations by Chojnacky et al. (2014) considering pine trees with spg B 0.40
d Adjustment made to Jenkins’ et al. equations by Chojnacky et al. (2014) considering pine trees with spg C 0.40 spg, where spg is

specific gravity of wood of on green volume to dry-weight basis
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store more biomass than young trees. Oliver and

Rycker (1990) indicated the same trend for P.

ponderosa, which still increased its biomass after

200 years. Therefore, the MAIDs projection to

50 years was a reliable and conservative timeframe

for windbreak tree biomass estimates given their

lifespan and their growth curves (Spears 2000).

Biomass and the potential C storage obtained from

these MAIDs in windbreaks were affected by their

location even within relatively small geographic areas.

These results are corroborated by the diversity of

locations and climatic conditions where these species

persist (USDA-NRCS 2006; Birdsey 1992; Kirby and

Potvin 2007). Brown et al. (1999), Ketterings et al.

(2001), Montagnini and Nair (2004) affirmed that

these changes could occur in areas smaller than the

ecoregions used throughout this study.

The different biomass models directly influenced

the estimates of C in this study. These differences in

the relationship between MAIDs and biomass/C

potential could be due to various reasons: (1) the

method for developing the allometric models and the

coefficients used in those models, (2) the species,

condition and location of the trees used to fit the

allometric models, (3) the location effect (Arcano

2005; McHale et al. 2009), (4) wood-specific gravity

(Jenkins et al. 2003), (5) site index (Balboa-Murias

et al. 2006), (6) stand density (Litton et al. 2004), and

(7) back-transformation correction factors.

Our analysis found that four of the models evalu-

ated fit the observations. Two of the proposed

published models (Berkhout & Husch, Schumacher

& Hall) and the two new models developed in this

study (This study 1 and This study 2) showed the best

agreement with observations so they were used to

estimate total aboveground tree biomass for P. pon-

derosa in Nebraska and Montana and in ecoregions

331 and 332. Surprisingly, coefficients for pines

presented by Jenkins reported the highest accuracy

for predicting tree biomass in the validation process.

These results indicate that the Jenkins’ et al. coeffi-

cients for pines may be used as a first approximation

for developing estimates of biomass and C storage

potential for open-grown trees.

The biomass estimates for all U.S. tree species

compiled by the FIA program can serve as a valuable

resource for comparisons based on predictions from

locally developed models. However, the coefficients

of Jenkins et al. (2003) as modified by Chojnacky et al.

(2014) did not necessarily produce values consistent

Table 8 Average carbon storage potential estimates (Mg C ha-1 year-1), for selected broadleaved deciduous and conifer species, in

U.S. regions

Region Broadleaved deciduous Conifers

Meana SE Mean SE

Northern Lake States 2.89b 0.40 2.42 0.23

Corn Belt 3.52 0.71 1.57 0.29

Southern Plains 13.60 7.72 3.84 0.04

Delta States 3.19 1.05 2.44 0.04

Appalachia 4.46 1.55 1.86 0.04

Rocky Mountain North 3.59 1.95 3.20 1.16

Rocky Mountain South NAc NA NA NA

Northeast 0.99 0.16 1.07 0.21

Northern Plains 2.88 0.35 3.18 1.32

Average 4.39 1.74 2.45 0.42

NA no available data, SE standard error of the mean estimate
a Mean carbon storage potential for 816 broadleaved deciduous 1111 conifer trees ha-1 and based on one row mono species

windbreak
b This number indicates that on average and based on all broadleaved deciduous species considered this windbreak will store

2.89 Mg of C per ha per year
c Value underestimated in the FIA dataset (not considered for analysis)
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with those from the destructively sampled data. Our

study results indicate that the original Jenkins et al.

model coefficients result in better predictions of

biomass in windbreak trees.

Regarding stand-level estimates, most authors

have reported an overestimation when using Jenkins

et al. (2003). Domke et al. (2012) reported the

Jenkins et al. (2003) model overestimated biomass

for the most abundant tree species in the FIA

inventory. The same trend was reported by Zhou

and Hemstrom (2009) when estimating aboveground

tree biomass on forest land in the Pacific Northwest.

Conversely, Zhou et al. (2015) found these forest-

derived models underestimated biomass in more

open-grown windbreak trees.

In this study, the aforementioned overestimations

agreed with the estimates for open-grown P. pon-

derosa trees in NE and MT, ecoregions 331 and 332,

indicating a need for applying this same exercise to

other regions to evaluate model predictions. Although

the relatively small sample size of 18 trees (12 trees for

NE and 6 forMT), are not likely to be representative of

all windbreaks with P. ponderosa, these results can be

used locally (Picard et al. 2012). Amuch larger sample

would be required to account for regional variability

(Weiskittel et al. 2015) (Table 9).

This study highlights how predictions from differ-

ent models, when extrapolated to more open-grown

trees growing in various regions, will produce varying

results when trying to predict field windbreak tree

biomass or C storage potential. The standardization of

the methodologies, the implementation of averaged

models across sites (Miles and Smith 2009), and the

development of geographic weighted regression mod-

els (Brunsdon et al. 1996) could be a potential solution

for reducing the current variability.

The above- to belowground biomass ratios reported

by Jenkins et al. (2003), when applied to this study,

resulted in estimates consistent with other studies. For

example, the belowground ratio for P. contorta ranged

from 20 to 28 % (Comeau and Kimmins 1989) and

26 % for P. sylvestris (Xiao and Ceulemans (2004).

On the other hand, Douglas fir (Pseudotsuga menziesii

(Mirb). Franco) was found to have proportionately

more root biomass on sites with low-productivity than

on a highly productivity sites (Keyes and Grier 1981).

For the same species, belowground production

represented a greater proportion to total production

in two xeric sites compared to two mesic sites

(Comeau and Kimmins 1989).

Estimates of C storage potentials per-unit-area were

difficult to compare with the data reported by other

authors because of their different approaches. How-

ever, the assessments carried out suggest a partial

agreement among reported estimates. The estimates

from Brandle et al. (1992), Nair et al. (2009),

Schoeneberger (2009), and this study fit in the

generalized range of 0.29–15.21 Mg C ha-1 year-1.

To avoid most uncertainties and make results more

usable, standardized experimental procedures and

data-gathering protocols for all regions are required

so that data can be compared on a wider basis

(Udawatta and Jose 2011).

The findings in this study suggest that the C storage

potential for windbreaks over 50 years range from

1.07 ± 0.21 to 3.84 ± 0.04 Mg C ha-1 year-1 for

conifer species and 0.99 ± 0.16 to 13.6 ± 7.72 Mg

C ha-1 year-1 for broadleaved deciduous species.

Because the magnitude of the differences in the

estimates from P. ponderosa suggested a good agree-

ment with the Jenkins et al. model predictions, this

analysis may provide the foundation for making a

comprehensive assessment of the coefficients used by

Jenkins et al. to estimate biomass for other open grown

tree species.

While much uncertainty exists in C estimation in

agroforestry systems first approximations are neces-

sary to move the state of the science forward. Much of

the uncertainty that exists is due to a dearth of data

available for trees growing outside of forests. More

research on C storage potential for windbreaks, using

local models, and analyzing variables such as site

index, tree densities, C accumulation in soils, and

future climates will greatly improve our understanding

of the carbon dynamics in these systems (Mbow et al.

2014). These uncertainties raise questions on which

trees and management options will be suitable in

future climates and how to best minimize negative

climate change impacts on agriculture (Nguyen et al.

2013). Although these uncertainties limit our ability to

definitively estimate the carbon storage potential of

windbreaks and other agroforestry practices, substan-

tial potential clearly exists. These uncertainties should

be addressed in future research.
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Table 9 Description of major ecoregions in the Continental United States

Ecoregion Name Description

211 Northeastern Mixed forest Province Modified continental climatic regime with maritime influence. Winters

are moderately long with continual ground snow cover. Annual

precipitation is generally equally distributed with a peak during

summer. Vegetation consists of forests that provide a transition between

boreal conifers and broadleaf deciduous

212 Laurentian Mixed Forest Province Continental-type climatic regime with maritime influence along the Great

Lakes. Winters moderately long with continual ground snow cover;

summers warm. Most precipitation occurs during summer. Low-relief,

hilly landscapes are a product of past glaciation. Vegetation consists of

forests that are a transition between boreal and broadleaf deciduous

221 Eastern Broadleaf Forest Province Continental-type climate of cold winters and warm summers. Annual

precipitation is greater during summer, water deficits infrequent.

Topography is variable, ranging from plains to low hills of low relief

along Atlantic coast. Interior areas are high hills to semi-mountainous,

parts of which were glaciated. Vegetation is characterized by tall, cold-

deciduous broadleaf forests that have a high proportion of mesophytic

species

222 Midwest Broadleaf Forest Province Continental climate with warm to hot summers. Frequent growing season

water deficits. Flat to hilly terrain with features associated with former

glaciation. Vegetation consists of cold-deciduous, hardwood-dominated

forests with a high proportion of species able to tolerate mild, brief,

periodic drought during the late summer

223 Central Interior Broadleaf Forest Province Continental climate with hot summers. Summer soil moisture deficits are

common. Vegetation is broadleaf deciduous forests with somewhat

open canopy and greater density of species

231 Southeastern Mixed Forest Province Uniform maritime climate with mild winters and hot, humid summers.

Annual precipitation is evenly distributed, but a brief period of mid to

late summer drought occurs in most years. Landscape is hilly with

increasing relief farther inland. Forest vegetation is a mixture of

deciduous hardwoods and conifers

232 Outer Coastal Plain Mixed Forest Province Humid, maritime climate; winters are mild and summers are warm.

Precipitation is abundant with rare periods of summer drought. Upland

forest vegetation is dominated by conifers, with deciduous hardwoods

along major floodplains

234 Lower Mississippi Riverine Forest Province Warm winters and hot summers. Precipitation occurs throughout the year

with minimum in all. Much of this sub region is influenced by periodic

flooding of the Mississippi River. Vegetation was initially forests of

cold-deciduous, esophytic hardwoods, which have now largely been

cleared and cultivated

251 Prairie Parkland (Temperate) Province Continental climate with cold winters and hot summers. Moderate

amounts of precipitation that occurs mainly during growing season.

Landform is mainly plains with areas of low hills. Vegetation was once

herbaceous with woodland of scattered deciduous broadleaf trees along

floodplains of major rivers; almost all has now been cleared for

agriculture

255 Prairie Parkland (Subtropical) Province Modified maritime subtropical, humid climate of relatively warm winters

and hot summers. Moderate amounts of precipitation occurring during

summer. Landforms are plains with low hills. Vegetation is mainly

herbaceous with areas of deciduous broadleaf woodland, particularly

along floodplains
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Table 9 continued

Ecoregion Name Description

313 Colorado Plateau Semi desert Province Modified continental climate of cold winters and summers with rains

from thunderstorms. More than half of precipitation occurs during

winter. Province is mostly tablelands with moderate to high relief.

Vegetation varies by altitude and varies from herbaceous and dwarf-

shrubland at low elevation, shrubland and woodland at moderate

elevation, to needle leaf forest at upper elevations

315 Southwest Plateau and Plains Dry Steppe

and Shrub Province

Cool, continental steppe, semiarid warm, modified marine sub humid

climate. Most precipitation falls during the growing season, but is less

than potential evaporation. Vegetation is mainly herbaceous with shrub

land with increasing woodland on steeper slopes

321 Chihuahuan Semi desert Province Subtropical arid climate of short winter and long hot summers and

includes isolated embedded areas of mountain climates of cooler

temperatures, lower relative humidity, and increased orographic

precipitation. Most precipitation occurs during mid to late summer,

mainly as thunderstorms that cause rapid runoff. Vegetation is almost

entirely dwarf-shrubland and sparse coverage, although small areas of

woodland do occur on higher mountains

322 American Semidesert and Desert Province Long hot summer and mild winters with little precipitation, although

some occurs as summer thunderstorms. Landscape, parts of which are

below sea level, consists of plains with low mountain ranges.

Vegetation is sparse and consists mainly of dwarf-shrubland, with

occasional shrubland and woodland at higher elevation

331 Great Plains-Palouse Dry Steppe Province Continental steppe, semiarid with cold dry winters and hot summers.

Landforms consist of plains and tablelands. Potential evaporation

exceeds precipitation. Vegetation is predominantly herbaceous with

lesser areas of shrubland

332 Great Plains Steppe Province Dry, continental climate with cool to cold winters; precipitation is about

half of potential evapotranspiration. Landscape consists of plains and

low hills of gentle relief. Vegetation is predominantly herbaceous with

woodland along riparian areas of waterways

M333 Northern Rocky Mountain Forest-Steppe

Coniferous Forest-Meadow Province

Maritime influenced cool temperature climate with warm, dry summers

and cold, moist winters with heavy snowfall. Small areas of glaciers

occur near the Canadian border. High-elevation, high-relief mountains

are the main landforms. Vegetation is mainly evergreen and deciduous,

needle leaf forest that varies in composition with altitude and aspect

M334 Black Hills Coniferous Forest Province Relatively long, cold winters and warm to hot summers. Annual

precipitation is low and occurs mostly as snow. Ecoregion highly

eroded, old, isolated, unglaciated large mountain dome of Precambrian

origin that is surrounded by plains. Vegetation is forests mostly of

evergreen needleleaf species although several deciduous broadleaf

species common to more northern latitudes may be present

341 Intermountain Semidesert and Desert

Province

Hot summer and cool to cold winters. Low annual precipitation, most of

which occurs as snow. Basin and range types of topography. Vegetation

consists of shrubland on plains; woodlands are on steeper slopes

342 Intermountain Semidesert Province Semiarid, cold continental climate with warm to hot, dry summers and

cold, dry winters. Climatic regime is one with little or no precipitation

during summer or fall. Topography consists of plains and plateaus with

isolated small mountain ranges. Vegetation is herbaceous and dwarf-

shrubland on plains, which changes to shrubland and woodland on

higher slopes

Source McNab et al. (2005)
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Conclusions

The purpose of our study was to better approximate C

estimates ofwindbreak trees bydeterminingwhichof the

readily available models were the best predictors, and

thenuse that information to develop regional estimates to

provide a basis for evaluating the use of windbreaks

within andacross regions in theU.S.Tree form in regards

to model selection for estimating tree C is important

(Melson et al. 2011) and, as demonstrated by Zhou et al.

(2015) and this study, is especially true for more open-

grown windbreak trees. Based on our study, we recom-

mend the use of the Jenkins et al. (2003) biomass model

and associated coefficients specifically for pines. As

more information becomes available, particularly on the

different species and greater range of diameters, newer

equations can be generated that will further reduce the

uncertainty in estimating the C stores in agroforestry.

A better understanding of how trees impact agri-

cultural lands, especially windbreaks and how these

impacts may in turn be affected by climate change are

essential as we develop management strategies (Gock-

owski et al. 2001). Depending on tree species, location

and windbreak arrangement, the C storage potential

can vary from one region to another and will most

likely vary even more under climate change. Having

scientifically sound and readily available means to

generate regional estimates of windbreak tree biomass

and C stocks will lead to a better understanding of the

dynamics of these agroforestry systems in contributing

to the global C cycle and national C budgets.
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