974 research outputs found

    X-ray fluorescence spectra of metals excited below threshold

    Full text link
    X-ray scattering spectra of Cu and Ni metals have been measured using monochromatic synchrotron radiation tuned from far above to more than 10 eV below threshold. Energy conservation in the scattering process is found to be sufficient to explain the modulation of the spectral shape, neglecting momentum conservation and channel interference. At excitation energies close to and above threshold, the emission spectra map the occupied local partial density of states. For the sub-threshold excitations, the high-energy flank of the inelastic scattering exhibits a Raman-type linear dispersion, and an asymmetric low energy tail develops. For excitation far below threshold the emission spectra are proportional to a convolution of the occupied and unoccuppied local partial densities of states.Comment: 10 pages, 3 figures, http://link.aps.org/doi/10.1103/PhysRevB.68.04511

    Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    Get PDF
    Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux <i>F</i> (particles m<sup>&minus;2</sup> s<sup>&minus;1</sup>), in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (<I>TA</I>) database, which is based on traffic intensity measurements. <P style='line-height: 20px;'> The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space) of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. <P style='line-height: 20px;'> The emission factor for the fleet mix in the measurement area <I>EF</I><sub><i>fm</i></sub>=1.4&plusmn;0.1&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup> was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a <I>F</I><sub>0</sub>=15&plusmn;18&times;10<sup>6</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The urban aerosol source flux can then be written as <I>F=EF</I><sub><i>fm</i></sub><I>TA+F</I><sub>0</sub>. In a second attempt to find a parameterisation, the friction velocity <i>U</i><sub>*</sub> normalised with the average friction velocity <!-- MATH overlineUastoverline{U_ast} --> <IMG WIDTH='21' HEIGHT='36' ALIGN='MIDDLE' BORDER='0' src='http://www.atmos-chem-phys.net/6/769/2006/acp-6-769-img15.gif' ALT='overlineUastoverline{U_ast}'> has been included, <I>F=EF</I><!-- MATH fmTAleft(fracUastoverlineUastight)0.4+F0_{fm }TAleft({frac{U_ast }{overline{U_ast}}} ight)^{0.4}{+}F_{0} --> <IMG WIDTH='136' HEIGHT='51' ALIGN='MIDDLE' BORDER='0' src='http://www.atmos-chem-phys.net/6/769/2006/acp-6-769-img16.gif' ALT='fmTAleft(fracUastoverlineUastright)0.4+F0_{fm }TAleft({frac{U_ast }{overline{U_ast}}}right)^{0.4}{+}F_{0}'>. This parameterisation results in a somewhat reduced emission factor, 1.3&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup>. When multiple linear regression have been used, two emission factors are found, one for light duty vehicles <I>EF</I><sub>LDV</sub>=0.3&plusmn;0.3&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup> and one for heavy-duty vehicles, <I>EF</I><sub>HDV</sub>=19.8&plusmn;4.0&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup>, and <i>F</I><sub>0</sub>=19&plusmn;16&times;10<sup>6</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The results show that during weekdays ~70&ndash;80% of the emissions came from HDV

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    Lethal and non-lethal effects of multiple indigenous predators on the invasive golden apple snail (Pomacea canaliculata)

    Get PDF
    1. We investigated the individual and combined effects of two predators (the climbing perch, Anabas testudineus, and the wetland crab, Esanthelphusa nimoafi) indigenous to wetlands in Laos, on the behaviour and survival of the invasive South American golden apple snail (Pomacea canaliculata). The snail is considered a pest, consuming large amounts of rice and other aquatic vegetation in the region. 2. Snail avoidance reactions to released predator chemical cues were investigated in aquaria while the effects of predators on a mixed snail population were studied in field enclosures that contained native aquatic plants (Salvinia cucullata, Ludwigia adscendens and Ipomoea aquatica). 3. In the aquaria experiment, neonate (2-3 mm) and medium-sized snails (8-10 mm) responded to fish chemical cues by going to the surface, whereas adult snails (35-40 mm) went to the bottom. In contrast, no size class of snails reacted to chemical cues released by crabs. 4. In the field experiment, fish reduced the abundance of neonate snails, and crabs reduced the abundance of all size classes. The effect of the combined predators could not be predicted from the mortality rate observed in single predator treatments. The survival of neonate and medium-sized snails was greater and of adults less than expected. The presence of predators did not affect egg production. Snails consumed significant amounts of plants despite the presence of predators. 5. Our findings suggest that some indigenous Asian predators have lethal and sublethal effects on P. canaliculata that depend on snail size and predator type. When in the presence of several predators the response of snails to one predator may either increase or decrease the vulnerability of snails to the others

    Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel

    Full text link
    The excitation energy dependence of the three-hole satellites in the L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured using synchrotron radiation. The satellite behavior in the non-radiative emission spectra at the L3 and L2 thresholds is compared and the influence of the Coster-Kronig channel explored. The three-hole satellite intensity at the L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold attributed to resonant processes at the 2p53d9 shake-up threshold. This is discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_

    Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    No full text
    International audienceUrban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux F (particles m-2 s-1), in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (TA) database, which is based on traffic intensity measurement. The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space) of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. The emission factor for the fleet mix in the measurement area EFfm=1.4±0.1×1014 veh-1 km-1 was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a F0=14±18×106 m-2 s-1. The urban aerosol source flux can then be written as F=EFfmTA+F0. In a second attempt to find a parameterisation, the friction velocity U* normalised with the average friction velocity has been included, F=EF. This parameterisation results in a somewhat reduced emission factor, 1.3×1014 veh-1 km-1. When multiple linear regression have been used, two emission factors are found, one for light duty vehicles EFLDV=0.3±0.3×1014 veh-1 km-1 and one for heavy-duty vehicles, EFHDV=19.8±4.0×1014 veh-1 km-1, and F0=18±16×106 m-2 s-1. The results show that during weekdays ~70?80% of the emissions came from HDV

    Evidence for electron transfer between graphene and non‐covalently bound π‐systems

    Get PDF
    Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet‐chemical non‐covalent functionalization of graphene with cationic π‐systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF‐SIMS. The charged π‐systems show a p‐doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p‐doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping

    Isotope shift in the electron affinity of chlorine

    Full text link
    The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl has been determined by tunable laser photodetachment spectroscopy to be -0.51(14) GHz. The isotope shift was observed as a difference in the onset of the photodetachment process for the two isotopes. In addition, the electron affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2 improvement in the accuracy over earlier measurements. Many-body calculations including lowest-order correlation effects demonstrates the sensitivity of the specific mass shift and show that the inclusion of higher-order correlation effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat

    Dean flow-coupled inertial focusing in curved channels

    Get PDF
    Passive particle focusing based on inertial microfluidics was recently introduced as a high-throughput alternative to active focusing methods that require an external force field to manipulate particles. In inertial microfluidics, dominant inertial forces cause particles to move across streamlines and occupy equilibrium positions along the faces of walls in flows through straight micro channels. In this study, we systematically analyzed the addition of secondary Dean forces by introducing curvature and show how randomly distributed particles entering a simple u-shaped curved channel are focused to a fixed lateral position exiting the curvature. We found the lateral particle focusing position to be fixed and largely independent of radius of curvature and whether particles entering the curvature are pre-focused (at equilibrium) or randomly distributed. Unlike focusing in straight channels, where focusing typically is limited to channel cross-sections in the range of particle size to create single focusing point, we report here particle focusing in a large cross-section area (channel aspect ratio 1: 10). Furthermore, we describe a simple u-shaped curved channel, with single inlet and four outlets, for filtration applications. We demonstrate continuous focusing and filtration of 10 mu m particles (with > 90% filtration efficiency) from a suspension mixture at throughputs several orders of magnitude higher than flow through straight channels (volume flow rate of 4.25ml/min). Finally, as an example of high throughput cell processing application, white blood cells were continuously processed with a filtration efficiency of 78% with maintained high viability. We expect the study will aid in the fundamental understanding of flow through curved channels and open the door for the development of a whole set of bio-analytical applications

    Intramolecular vibronic dynamics in molecular solids: C60

    Get PDF
    Vibronic coupling in solid C60 has been investigated with a combination of resonant photoemission spectroscopy (RPES) and resonant inelastic x-ray scattering (RIXS). Excitation as a function of energy within the lowest unoccupied molecular orbital resonance yielded strong oscillations in intensity and dispersion in RPES, and a strong inelastic component in RIXS. Reconciling these two observations establishes that vibronic coupling in this core hole excitation leads to predominantly inelastic scattering and localization of the excited vibrations on the molecule on a femtosecond time scale. The coupling extends throughout the widths of the frontier valence bands.
    • 

    corecore