86 research outputs found

    Blauwalgen binnen het Kennis voor Klimaat programma

    Get PDF
    Korte beschrijving van de inventarisatie van cyanotoxines die binnen het Kennis voor Klimaat Programma uitgevoerd gaat worden in Nederlandse oppervlaktewateren, om een indruk te krijgen welke toxines waar en onder welke omstandigheden voorkomen

    Assessment of changes in potential nutrient limitation in an impounded river after application of lanthanum-modified bentonite

    Get PDF
    With the advent of phosphorus (P)-adsorbent materials and techniques to address eutrophication in aquatic systems, there is a need to develop interpretive techniques to rapidly assess changes in potential nutrient limitation. In a trial application of the P-adsorbent, lanthanum-modified bentonite (LMB) to an impounded section of the Canning River, Western Australia, a combination of potential P, nitrogen (N) and silicon (Si) nutrient limitation diagrams based on dissolved molar nutrient ratios and actual dissolved nutrient concentrations have been used to interpret trial outcomes. Application of LMB resulted in rapid and effective removal of filterable reactive P (FRP) from the water column and also effectively intercepted FRP released from bottom sediments until the advent of a major unseasonal flood event. A shift from potential N-limitation to potential P-limitation also occurred in surface waters. In the absence of other factors, the reduction in FRP was likely to be sufficient to induce actual nutrient limitation of phytoplankton growth. The outcomes of this experiment underpins the concept that, where possible in the short-term, in managing eutrophication the focus should not be on the limiting nutrient under eutrophic conditions (here N), but the one that can be made limiting most rapidly and cost-effectively (P)

    Lanthanum from a modified clay used in eutrophication control is bioavailable to the marbled crayfish (Procambarus fallax f. virginalis)

    Get PDF
    To mitigate eutrophication in fresh standing waters the focus is on phosphorus (P) control, i.e. on P inflows to a lake as well as a lake's sediment as internal P source. The in-lake application of the lanthanum (La) modified clays – i.e. La modified bentonite (Phoslock) or La modified kaolinite, aim at dephosphatising the water column and at reducing the release of P from a lake's sediment. Application of these clays raises the question whether La from these clays can become bioavailable to biota. We investigated the bioavailability of La from Phoslock in a controlled parallel groups experiment in which we measured the La in carapace, gills, ovaries, hepatopancreas and abdominal muscle after 0, 14 and 28 days of exposure to Phoslock. Expressing the treatment effect as the difference of the median concentration between the two treatment groups (Phoslock minus control group) yield the following effects, the plus sign (+) indicating an increase, concentrations in µg g-1 dry weight: Day 14: carapace +10.5 µg g-1, gills +112 µg g-1, ovaries +2.6 µg g-1, hepatopancreas +32.9 µg g-1 and abodminal muscle +3.2 µg g-1. Day 28: carapace +17.9 µg g-1; gills +182 µg g-1; ovaries +2.2 µg g-1; hepatopancreas +41.9 µg g-1 and abodminal muscle +7.6 µg g-1, all effects were statistically significant. As La from Phoslock is bio-available to and taken up by the marbled crayfishes (Procambarus fallax f. virginalis), we advocate that the application of in-lake chemical water treatments to mitigate eutrophication should be accompanied by a thorough study on potential side effect

    Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite

    Get PDF
    A combined field and laboratory scale study of 10 European lakes treated between 2006 and 2013 with a lanthanum (La) modified bentonite (LMB) to control sediment phosphorus (P) release was conducted. The study followed the responses in sediment characteristics including La and P fractions and binding forms, P adsorption capacity of discrete sediment layers, and pore water P concentrations. Lanthanum phosphate mineral phases were confirmed by solid state 31P MAS NMR and LIII EXAFS spectroscopy. Rhabdophane (LaPO4 · nH2O) was the major phase although indications of monazite (LaPO4) formation were also reported, in the earliest treated lake. Molar ratios between La and P in the sediments were generally above 1, demonstrating excess La relative to P. Lanthanum was vertically mixed in the sediment down to a depth of 10 cm for eight of the ten lakes, and recovery of La in excess of 100% of the theoretical aerial load indicated translocation of the LMB towards the deepest areas of the lakes. Lanthanum was generally recovered from bed sediment samples following sequential chemical extraction from the HCl fraction. Soluble reactive P (SRP) release experiments on intact sediment cores indicated conditions of P retention (with the exception of two lakes) by sediments, indicating effective control of sediment P release, i.e. between two and nine years after treatment

    Eutrophication management in surface waters using lanthanum modified bentonite: a review

    Get PDF
    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB in saline waters need a careful risk evaluation due to potential lanthanum release

    A Comparative Study on Three Analytical Methods for the Determination of the Neurotoxin BMAA in Cyanobacteria

    Get PDF
    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been considered a serious health threat because of its putative role in multiple neurodegenerative diseases. First reports on BMAA concentrations in cyanobacteria were alarming: nearly all cyanobacteria were assumed to contain high BMAA concentrations, implying ubiquitous exposure. Recent studies however question this presence of high BMAA concentrations in cyanobacteria. To assess the real risk of BMAA to human health, this discrepancy must be resolved. We therefore tested whether the differences found could be caused by the analytical methods used in different studies. Eight cyanobacterial samples and two control samples were analyzed by three commonly used methods: HPLC-FLD analysis and LC-MS/MS analysis of both derivatized and underivatized samples. In line with published results, HPLC-FLD detected relatively high BMAA concentrations in some cyanobacterial samples, while both LC-MS/MS methods only detected BMAA in the positive control (cycad seed sarcotesta). Because we could eliminate the use of different samples and treatments as causal factors, we demonstrate that the observed differences were caused by the analytical methods. We conclude that HPLC-FLD overestimated BMAA concentrations in some cyanobacterial samples due to its low selectivity and propose that BMAA might be present in (some) cyanobacteria, but in the low µg/g or ng/g range instead of the high µg/g range as sometimes reported before. We therefore recommend to use only selective and sensitive analytical methods like LC-MS/MS for BMAA analysis. Although possibly present in low concentrations in cyanobacteria, BMAA can still form a health risk. Recent evidence on BMAA accumulation in aquatic food chains suggests human exposure through consumption of fish and shellfish which expectedly exceeds exposure through cyanobacteria

    Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems

    Get PDF
    While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials
    • …
    corecore