8,094 research outputs found

    A Binary Millisecond Pulsar in Globular Cluster NGC6544

    Get PDF
    We report the detection of a new 3.06 ms binary pulsar in the globular cluster NGC6544 using a Fourier-domain ``acceleration'' search. With an implied companion mass of ~0.01 solar masses and an orbital period of only P_b~1.7 hours, it displays very similar orbital properties to many pulsars which are eclipsed by their companion winds. The orbital period is the second shortest of known binary pulsars after 47 Tuc R. The measured flux density of 1.3 +/- 0.4 mJy at 1332 MHz indicates that the pulsar is almost certainly the known steep-spectrum point source near the core of NGC6544.Comment: Accepted by ApJ Letters on 11 October 2000, 5 page

    GBT Discovery of Two Binary Millisecond Pulsars in the Globular Cluster M30

    Full text link
    We report the discovery of two binary millisecond pulsars in the core-collapsed globular cluster M30 using the Green Bank Telescope (GBT) at 20 cm. PSR J2140-2310A (M30A) is an eclipsing 11-ms pulsar in a 4-hr circular orbit and PSR J2140-23B (M30B) is a 13-ms pulsar in an as yet undetermined but most likely highly eccentric (e>0.5) and relativistic orbit. Timing observations of M30A with a 20-month baseline have provided precise determinations of the pulsar's position (within 4" of the optical centroid of the cluster), and spin and orbital parameters, which constrain the mass of the companion star to be m_2 >~ 0.1Msun. The position of M30A is coincident with a possible thermal X-ray point source found in archival Chandra data which is most likely due to emission from hot polar caps on the neutron star. In addition, there is a faint (V_555 ~ 23.8) star visible in archival HST F555W data that may be the companion to the pulsar. Eclipses of the pulsed radio emission from M30A by the ionized wind from the compact companion star show a frequency dependent duration (\propto\nu^{-\alpha} with \alpha ~ 0.4-0.5) and delay the pulse arrival times near eclipse ingress and egress by up to 2-3 ms. Future observations of M30 may allow both the measurement of post-Keplerian orbital parameters from M30B and the detection of new pulsars due to the effects of strong diffractive scintillation.Comment: 10 pages, 6 figures, Submitted to ApJ. This version includes many recommended modifications, an improved structure, a new author, and a completely redone optical analysi

    VLBA Imaging of the OH Maser in IIIZw35

    Get PDF
    We present a parsec-scale image of the OH maser in the nucleus of the active galaxy IIIZw35, made using the Very Long Baseline Array at a wavelength of 18 cm. We detected two distinct components, with a projected separation of 50 pc (for D=110 Mpc) and a separation in Doppler velocity of 70 km/s, which contain 50% of the total maser flux. Velocity gradients within these components could indicate rotation of clouds with binding mass densities of ~7000 solar masses per cubic parsec, or total masses of more than 500,000 solar masses. Emission in the 1665-MHz OH line is roughly coincident in position with that in the 1667-MHz line, although the lines peak at different Doppler velocities. We detected no 18 cm continuum emission; our upper limit implies a peak apparent optical depth greater than 3.4, assuming the maser is an unsaturated amplifier of continuum radiation.Comment: 10 pages, 3 figure

    Discovery of Water Maser Emission in Five AGN and a Possible Correlation Between Water Maser and Nuclear 2-10 keV Luminosities

    Get PDF
    We report the discovery of water maser emission in five active galactic nuclei (AGN) with the 100-m Green Bank Telescope (GBT). The positions of the newly discovered masers, measured with the VLA, are consistent with the optical positions of the host nuclei to within 1 sigma (0.3 arcsec radio and 1.3 arcsec optical) and most likely mark the locations of the embedded central engines. The spectra of three sources, 2MASX J08362280+3327383, NGC 6264, and UGC 09618 NED02, display the characteristic spectral signature of emission from an edge-on accretion disk with maximum orbital velocity of ~700, ~800, and ~1300 km s^-1, respectively. We also present a GBT spectrum of a previously known source MRK 0034 and interpret the narrow Doppler components reported here as indirect evidence that the emission originates in an edge-on accretion disk with orbital velocity of ~500 km s^-1. We obtained a detection rate of 12 percent (5 out of 41) among Seyfert 2 and LINER systems with 10000 km s^-1 < v_sys < 15000 km s^-1. For the 30 nuclear water masers with available hard X-ray data, we report a possible relationship between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity, L_{2-10} proportional to L_{H2O}^{0.5+-0.1}, consistent with the model proposed by Neufeld and Maloney in which X-ray irradiation and heating of molecular accretion disk gas by the central engine excites the maser emission.Comment: 16 pages, 5 tables, 3 figures, to appear in the November 10, 2006, v651n2 issue of the Astrophysical Journa

    ‘Trying to pin down jelly’ - exploring intuitive processes in quality assessment for meta-ethnography

    Get PDF
    Background: Studies that systematically search for and synthesise qualitative research are becoming more evident in health care, and they can make an important contribution to patient care. However, there is still no agreement as to whether, or how we should appraise studies for inclusion. We aimed to explore the intuitive processes that determined the ‘quality’ of qualitative research for inclusion in qualitative research syntheses. We were particularly interested to explore the way that knowledge was constructed. Methods: We used qualitative methods to explore the process of quality appraisal within a team of seven qualitative researchers funded to undertake a meta-ethnography of chronic non-malignant musculoskeletal pain. Team discussions took place monthly between October 2010 and June 2012 and were recorded and transcribed. Data was coded and organised using constant comparative method. The development of our conceptual analysis was both iterative and collaborative. The strength of this team approach to quality came from open and honest discussion, where team members felt free to agree, disagree, or change their position within the safety of the group. Results: We suggest two core facets of quality for inclusion in meta-ethnography - (1) Conceptual clarity; how clearly has the author articulated a concept that facilitates theoretical insight. (2) Interpretive rigour; fundamentally, can the interpretation ‘be trusted?’ Our findings showed that three important categories help the reader to judge interpretive rigour: (ii) What is the context of the interpretation? (ii) How inductive is the interpretation? (iii) Has the researcher challenged their interpretation? Conclusions: We highlight that methods alone do not determine the quality of research for inclusion into a meta-ethnography. The strength of a concept and its capacity to facilitate theoretical insight is integral to meta-ethnography, and arguably to the quality of research. However, we suggest that to be judged ‘good enough’ there also needs to be some assurance that qualitative findings are more than simply anecdotal. Although our conceptual model was developed specifically for meta-ethnography, it may be transferable to other research methodologies

    Temporal variations in river water surface elevation and slope captured by AirSWOT

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission aims to improve the frequency and accuracy of global observations of river water surface elevations (WSEs) and slopes. As part of the SWOT mission, an airborne analog, AirSWOT, provides spatially-distributed measurements of WSEs for river reaches tens to hundreds of kilometers in length. For the first time, we demonstrate the ability of AirSWOT to consistently measure temporal dynamics in river WSE and slope. We evaluate data from six AirSWOT flights conducted between June 7–22, 2015 along a ~90 km reach of the Tanana River, AK. To validate AirSWOT measurements, we compare AirSWOT WSEs and slopes against an in situ network of 12 pressure transducers (PTs). Assuming error-free in situ data, AirSWOT measurements of river WSEs have an overall root mean square difference (RMSD) of 11.8 cm when averaged over 1 km2 areas while measurements of river surface slope have an RMSD of 1.6 cm/km for reach lengths &gt;5 km. AirSWOT is also capable of recording accurate river WSE changes between flight dates, with an RMSD of 9.8 cm. Regrettably, observed in situ slope changes that transpired between the six flights are well below AirSWOT's accuracy, limiting the evaluation of AirSWOT's ability to capture temporal changes in slope. In addition to validating the direct AirSWOT measurements, we compare discharge values calculated via Manning's equation using AirSWOT WSEs and slopes to discharge values calculated using PT WSEs and slopes. We define or calibrate the remaining discharge parameters using a combination of in situ and remotely sensed observations, and we hold these remaining parameters constant between the two types of calculations to evaluate the impact of using AirSWOT versus the PT observations of WSE and slope. Results indicate that AirSWOT-derived discharge estimates are similar to the PT-derived discharge estimates, with an RMSD of 13.8%. Additionally, 42% of the AirSWOT-based discharge estimates fall within the PT discharge estimates' uncertainty bounds. We conclude that AirSWOT can measure multitemporal variations in river WSE and spatial variations in slope with both high accuracy and spatial sampling, providing a compelling alternative to in situ measurements of regional-scale, spatiotemporal fluvial dynamics

    Exome-wide association study of pancreatic cancer risk

    Get PDF
    We conducted a case-control exome-wide association study to discover germline variants in coding regions that affect risk for pancreatic cancer, combining data from 5 studies. We analyzed exome and genome sequencing data from 437 patients with pancreatic cancer (cases) and 1922 individuals not known to have cancer (controls). In the primary analysis, BRCA2 had the strongest enrichment for rare inactivating variants (17/437 cases vs 3/1922 controls) (P=3.27x10(-6); exome-wide statistical significance threshold P&lt;2.5x10(-6)). Cases had more rare inactivating variants in DNA repair genes than controls, even after excluding 13 genes known to predispose to pancreatic cancer (adjusted odds ratio, 1.35, P=.045). At the suggestive threshold (P&lt;.001), 6 genes were enriched for rare damaging variants (UHMK1, AP1G2, DNTA, CHST6, FGFR3, and EPHA1) and 7 genes had associations with pancreatic cancer risk, based on the sequence-kernel association test. We confirmed variants in BRCA2 as the most common high-penetrant genetic factor associated with pancreatic cancer and we also identified candidate pancreatic cancer genes. Large collaborations and novel approaches are needed to overcome the genetic heterogeneity of pancreatic cancer predisposition

    The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?

    Get PDF
    For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth

    The stigmatisation of people with chronic back pain

    Get PDF
    This study responded to the need for better theoretical understanding of experiences that shape the beliefs, attitudes and needs of chronic back patients attending pain clinics. The aim was explore and conceptualise the experiences of people of working age who seek help from pain clinics for chronic back pain. Methods. This was a qualitative study, based on an interpretative phenomenological approach (IPA). During in-depth interviews in their homes, participants were invited to 'tell their story' from the time their pain began. Participants were twelve male and six female patients, aged between 28 and 62 years, diagnosed as having chronic benign back pain. All had recently attended one of two pain clinics as new referrals. The interview transcripts were analysed thematically. Findings. Stigmatisation emerged as a key theme from the narrative accounts of participants. The findings expose subtle as well as overt stigmatising responses by family, friends, health professionals and the general public which appeared to have a profound effect on the perceptions, self esteem and behaviours of those interviewed. Conclusions. The findings suggest that patients with chronic back pain feel stigmatised by the time they attend pain clinics and this may affect their attitudes and behaviours towards those offering professional help. Theories of chronic pain need to accommodate these responses, while pain management programmes need to address the realities and practicalities of dealing with stigma in everyday life

    The self-force on a static scalar test-charge outside a Schwarzschild black hole

    Get PDF
    The finite part of the self-force on a static scalar test-charge outside a Schwarzschild black hole is zero. By direct construction of Hadamard's elementary solution, we obtain a closed-form expression for the minimally coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form expression, we compute the necessary external force required to hold the charge stationary. Although the energy associated with the scalar field contributes to the renormalized mass of the particle (and thereby its weight), we find there is no additional self-force acting on the charge. This result is unlike the analogous electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation using Carter's mass-variation theorem for black holes. The primary motivation for this calculation is to develop techniques and formalism for computing all forces - dissipative and non-dissipative - acting on charges and masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form electrostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series solutions.Comment: RevTeX, To Appear in Phys. Rev.
    corecore