5,074 research outputs found

    Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    Get PDF
    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi)

    Performance Characteristics of Nile Tilapia (Oreochromis niloticus) Fed Diets Containing Graded Levels of Fuel-Based Distllers Dried Grains with Solubles

    Get PDF
    A feeding trial was performed to investigate levels of corn-based Distillers Dried Grains with solubles (DDGS), a co-product of fuel ethanol manufacturing, used as a nutrient source for juvenile Nile tilapia (Oreochromis niloticus). Three isocaloric (15.7±0.7 MJ kg-1 dry matter), isonitrogenous (29.6±1.0% crude protein) experimental diets were formulated to contain 20, 30 and 40% DDGS; a commercial diet containing fishmeal was used as a reference diet. Glass aquaria (110 L) were stocked with Nile tilapia (mean weight = 6.7 g) with four replicates per diet. Weight gains, conversion ratios and hepatosomatic indices did not significantly differ between fish fed 20% DDGS and reference diets. Dressing percentages were similar among fish fed 20 and 30% DDGS and reference diets, while no difference occurred in protein efficiency ratios among diets. These results indicate that aquaculture diets incorporating 20% DDGS may produce similar performance results to commercial diets of similar energy content

    Critical collapse of collisionless matter - a numerical investigation

    Get PDF
    In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model significantly different from those considered so far in this context. We study the transition from dispersion to black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by means of a numerical code similar to those commonly used in plasma physics. The result is that for the initial data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using psfig

    Conservation management improves agroecosystem function and resilience of soil nitrogen cycling in response to seasonal changes in climate

    Get PDF
    Understanding how conservation agricultural management improves soil nitrogen (N) stability in the face of climate change can help increase agroecosystem productivity and mitigate runoff, leaching and downstream water quality issues. We conducted a 2-year field study in a 36-year-old rain-fed cotton production system to evaluate the impacts of changing climatic factors (temperature and precipitation) on soil N under conservation management, including moderate inorganic N fertilizer application (0 and 67 kg N ha−1 ), winter cover crops (fallow; winter wheat, Triticum aestivum L.; hairy vetch, Vicia villosa Roth), and reduced tillage (no-till; disk tillage). Structural equation modeling (SEM) was used to quantify and compare the effects of conservation management and climatic factors on soil N concentrations. Fertilizer and vetch cover crops increased soil total N concentration by 16% and 18%, respectively, and also increased microbial N transformation rate by 41% and 168%. In addition, vetch cover crops also increased soil labile N concentrations by 57%, 21%, and 79%, i.e., extractable organic N, ammonium, and nitrate, respectively. The highest soil ÎŽ15N value (6.4 ± 0.3‰) was observed under the 67 kg N ha−1 fertilizer-wheat-disk tillage treatment, and the lowest value (4.8 ± 0.3‰) under the zero-fertilizer-wheat-no-till treatment, indicating fertilizer and tillage might accelerate microbial N transformation. The SEM showed positive effects of temperature and precipitation on labile N concentrations, suggesting destabilization of soil N and the potential for soil N loss under increased temperature and intensified precipitation. Fertilizer and vetch use might mitigate some of the effects of temperature by accelerating microbial N transformations, with vetch having a larger effect than fertilizer (0.35 vs. 0.15, Table 1). No-till can reduce some of the effects of precipitation on soil labile N by maintaining soil structure. Our study suggests that fertilizer, vetch cover crop, and no-till might help improve function and resilience of agroecosystems in relation to soil N cycling. Soil N stabilization in cropping systems can be enhanced by adjusting agricultural management

    Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber

    Full text link
    Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate-dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present new results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, waveback velocity exhibits pronounced rate-dependence and the wavefront velocity does not. Moreover, the discrepancy between waveback velocity RCs is most significant for small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wavefront and waveback velocities. Our calculations show that waveback velocity rate-dependence is due to APD restitution, not memory.Comment: 17 pages, 7 figure

    Energy release associated with a first-order phase transition in a rotating neutron star core

    Get PDF
    We calculate energy release associated with a first order phase transition at the center of a rotating neutron star. The results are based on precise numerical 2-D calculations, in which both the polytropic equations of state (EOS) as well as realistic EOS of the normal phase are used. Presented results are obtained for a broad range of metastability of initial configuration and size of the new superdense phase core in the final configuration. For small radii of the superdense phase core analytical expressions for the energy release are obtained. For a fixed "overpressure" dP (the relative excess of central pressure of collapsing metastable star over the pressure of equilibrium first-order phase transition) the energy release remarkably does not depend on the stellar angular momentum and coincides with that for nonrotating stars with the same dP. The energy release is proportional to dP^2.5 for small dPs, when sufficiently precise brute force 2-D numerical calculations are out of question. For higher dPs, results of 1-D calculations of energy release for non-rotating stars are shown to reproduce, with very high precision, the exact 2-D results for rotating stars.Comment: 8 pages, 8 figures, submitted to A&

    Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems

    Get PDF
    In the limit of low viscosity, we show that the amplitude of the modes of oscillation of a rotating fluid, namely inertial modes, concentrate along an attractor formed by a periodic orbit of characteristics of the underlying hyperbolic Poincar\'e equation. The dynamics of characteristics is used to elaborate a scenario for the asymptotic behaviour of the eigenmodes and eigenspectrum in the physically relevant r\'egime of very low viscosities which are out of reach numerically. This problem offers a canonical ill-posed Cauchy problem which has applications in other fields.Comment: 4 pages, 5 fi

    Spherically symmetric steady states of galactic dynamics in scalar gravity

    Full text link
    The kinetic motion of the stars of a galaxy is considered within the framework of a relativistic scalar theory of gravitation. This model, even though unphysical, may represent a good laboratory where to study in a rigorous, mathematical way those problems, like the influence of the gravitational radiation on the dynamics, which are still beyond our present understanding of the physical model represented by the Einstein--Vlasov system. The present paper is devoted to derive the equations of the model and to prove the existence of spherically symmetric equilibria with finite radius.Comment: 13 pages, mistypos correcte

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    Upper Boundary Extension of the NASA Ames Mars General Circulation Model

    Get PDF
    Extending the NASA Ames Mars General Circulation Model (MGCM) upper boundary will expand our understanding of the connection between the lower and upper atmosphere of Mars through the middle atmosphere. The extension's main requirements is incorporation of Non-local thermodynamic equilibrium (NLTE) heating (visible) and cooling (infrared). NLTE occurs when energy is exchanged more rapidly with the radiation field (or other energy sources) rather than collisions with other molecules. Without NLTE above approximately 80km/approximately 60km in Mars' atmosphere the IR/visible heating rates are overestimated. Currently NLTE has been applied successfully into the 1D RT code and is in progress for the 3D application
    • 

    corecore