14 research outputs found

    Proposal of a new erythemal UV radiation amplification factor

    No full text
    International audienceThis work is aimed to propose a natural expansion of radiation amplification factor (RAF) for erythemal irradiance to consider all solar zenith angles cases together. In this direction, the article analyzes the relationship between measurements of UV erythemal radiation (UVER) recorded at Badajoz (Spain) and the total ozone column estimated by the instrument TOMS/NASA for that location during the period February 2001?December 2005. The new RAF parameter is formulated by power equation using slant ozone and UVER atmospheric transmissivity values. Thus, reliable values of this parameter have been reported. These values could serve as a new relevant index for comparison with other studies and model's result. The new RAF is calculated with measurements recorded during completely clear cases using clearness index values higher than 0.75. The RAF value was 1.35±0.01, it is to say, when the slant ozone amount decreases 1% at Badajoz, UVER atmospheric transmissivity values and, therefore, UVER surface values approximately increase 1.35%. This result emphasizes the interest of measuring and monitoring simultaneous measurements of UV radiation and stratospheric ozone even for mid-latitudes. The influence of total ozone amount and cloudiness changes on new RAF values is analyzed. Cloud-free conditions allow to study the ozone influences while cloud effects are analyzed with all data by means of monthly average of slant ozone and UVER atmospheric transmissivities values

    Improving the solar zenith angle dependence of broadband UV radiometers calibration

    No full text
    International audienceThis paper focusses on the proposal of a new method for the calibration of broadband ultraviolet radiometers. The advantage of the method proposed is the accurate modelling of the dependence on the solar zenith angle. The new model is compared with other one-step calibration methods and with the two-step method, which requires the knowledge of the actual response of the broadband radiometer. For this purpose, three broadband radiometers are calibrated against a spectrophotometer of reference. The new method is validated comparing its predictions with the spectrophotometer measurements using an independent data set

    Analysis of a low ozone episode over Extremadura (Spain) in January 2006 and its influence on UV radiation

    Get PDF
    The main objectives of this work are to analyze, firstly, the detail of the causes of a low ozone event which occurred in January 2006 and, secondly, the related effects of this anomalous episode on ultraviolet (UV) radiation measured at three locations in Extremadura (South-Western Spain). On 19 January 2006, the OMI total ozone column (TOC) was 16–20% below the January mean value of TOMS/NASA TOC (period 1996–2005). The back trajectories analysis with the HYSplit model indicates that the notable decrease of TOC could be attributed to a fast rise of the isentropic trajectories height. Concomitantly, UV erythemal radiation greatly increases (between 23% and 37%) on 19 January 2006 respect to UV erythemal radiation measured on 19 January 2005. This notable increase in winter UV solar radiation may involve harmful effects for organisms adapted to receive less radiation during that season (e.g. early developmental stages of terrestrial plants and phytoplankton)

    Measurements of total ozone amount over Badajoz (Southwestern Spain) by means of a GUV multiband radiometer

    Get PDF
    The Ultraviolet Index (UVI) obtained by a multichannel radiometer GUV‐2511 (Biospherical Instruments Inc.) is analyzed in this paper. This instrument has been recently installed in the radiometric station of Extremadura University in Badajoz (Spain). The UV Index has been calculated by a linear combination of three and four GUV channel irradiance values. In order to test these results, simultaneous values of UVI were calculated with the data provided by a well calibrated broadband UVS‐E‐T instrument colocated side by side the GUV multichannel. This radiometer has a spectral response that is adapted to the erythemal (sunburn) action spectrum of the human skin. One‐minute simultaneous values of both instruments have been used to calculate ultraviolet Index (UVI). Although the measurement period is limited, it covers all sky conditions, from cloud‐free to overcast days. UVI calculated with the whole data set by both methods are well correlated, but not as well as using only clear day data. It was observed that GUV underestimates UVI values (mean bias error, MBE=18.9%), being the four channel method the most successful

    Kelvin Waves and Internal Bores in the Marine Boundary Layer Inversion and Their Relationship to Coastally Trapped Wind Reversals

    Get PDF
    Detailed observations of a coastally trapped disturbance, or wind reversal, on 10–11 June 1994 along the California coast provide comprehensive documentation of its structure, based on aircraft, wind profiler, radio acoustic sounding system, and buoy measurements. Unlike the expectations from earlier studies based on limited data, which concluded that the deepening of the marine boundary layer (MBL) was a key factor, the 1994 data show that the perturbation was better characterized as an upward thickening of the inversion capping the MBL. As the event propagated over a site, the reversal in the alongshore wind direction occurred first within the inversion and then 3–4 h later at the surface. A node in the vertical structure (defined here as the altitude of zero vertical displacement) is found just above the inversion base, with up to 200-m upward displacements of isentropic surfaces above the node, and 70-m downward displacements below. Although this is a single event, it is shown that the vertical structure observed is representative of most other coastally trapped wind reversals. This is determined by comparing a composite of the 10–11 June 1994 event, based on measurements at seven buoys, with surface pressure perturbations calculated from aircraft data. These results are compared to the composite of many events. In each case a weak pressure trough occurred between 2.4 and 4.0 h ahead of the surface wind reversal, and the pressure rose by 0.32–0.48 mb between the trough and the wind reversal. The pressure rise results from the cooling caused by the inversion’s upward expansion. The propagation and structure of the event are shown to be best characterized as a mixed Kelvin wave–bore propagating within the inversion above the MBL, with the MBL acting as a quasi-rigid lower boundary. If the MBL is instead assumed to respond in unison with the inversion, then the theoretically predicted intrinsic phase speeds significantly exceed the observed intrinsic phase speed. The hybrid nature of the event is indicated by two primary characteristics: 1) the disturbance had a much shallower slope than expected for an internal bore, while at the same time the upward perturbation within the inversion was quasi-permanent rather than sinusoidal, which more closely resembles a bore; and 2) the predicted phase speeds for the ‘‘solitary’’ form of nonlinear Kelvin wave and for an internal bore are both close to the observed intrinsic phase speed

    Counteracting gradients of light and soil nutrients in the understorey of Mediterranean oak forests.

    Get PDF
    The forest canopy modifies the availability of resources (light, water, and soil nutrients) in the understorey. In this paper we analyze the relationships between woody canopy density, litter accumulation, and topsoil N and P availability in the understorey of two oak forests: one in southern Portugal and the other in southern Spain. Both forests persist on low-nutrient soils, particularly poor in P. We hypothesize that direct and indirect effects of the canopy overstorey cause opposite gradients in the availability of essential resources (light and key soil nutrients) in the understorey. In both studied forests we found significant relationships between the overall canopy density, light availability, topsoil litter accumulation, and the availability of N and P, which frequently limit plant growth. Path analysis (by Shipley’s d-sep method) showed that the available data were consistent with the proposed causal model. The average values of soil variables at the end quartiles of the light-availability gradient were compared. Results showed large differences in litter accumulation (~30×) and available-N and -P topsoil concentrations (~3×) in the Spanish forest (with the wider environmental gradient). Furthermore, P increased from the ‘very low’ range to the ‘low’ or even the ‘optimum’ range of availability (according to standard plant growth criteria), which suggests potential effects on the growth of the understorey plant species. We conclude that the counteracting gradients of the essential resources -light and nutrients- in the forest understorey resulted from direct and indirect effects of the canopy overstorey, respectively. We suggest that these counteracting effects of the woody canopy on essential resources of different nature must be considered when interpreting the patterns of understorey plant populations and communities.The spanish MEC (CGL2005-05830-C03-01-BOS, DINAMED project) and the Portuguese FCT(SFRH/BD/8322/2002 grant to SMM)supported the research.Peer reviewe

    Daily and annual variations of erythemal ultraviolet radiation in Southwestern Spain

    No full text
    The potential danger of ultraviolet (UV) radiation and its increasing levels at the Earth's surface due to ozone depletion have demanded worldwide representative measurements of UV radiation. This study presents four and one-half years of original records of high temporal resolution ultraviolet erythemal radiation (UVER) measured in Badajoz, Spain. Its principal aim is to statistically characterize the UVER magnitude and temporal variations, but also to address the interesting special cases of cloud-free and cloudy skies. In particular, the study reports reliable values of fundamental statistical indices, which can serve as relevant values for comparison with other studies and model results. Moreover, the daily and annual evolution of the main central moments of the distribution function are analyzed and interpreted in terms of the forcing and attenuation sources. The analysis focuses on two different temporal scales: hourly and daily values. Integrated hourly and daily data allow for the study of daily and annual variations of the fundamental statistical indices. All of them exhibit high symmetry with respect to solar noon and to certain dates near summer and winter solstices. The analysis shows the great influence of cloudiness in the distribution of UVER values. Thus, both daily and hourly UVER data present a slightly asymmetrical, left tailed, mesokurtic distribution for all months, except for summer, when the lack of clouds produces a leptokurtic distribution which is skewed to the left

    An empirical model to estimate ultraviolet erythemal transmissivity

    No full text
    An empirical model to estimate the solar ultraviolet erythemal irradiance (UVER) for all-weather conditions is presented. This model proposes a power expression with the UV transmissivity as a dependent variable, and the slant ozone column and the clearness index as independent variables. The UVER were measured at three stations in South-Western Spain during a five year period (2001–2005). A dataset corresponding to the period 2001–2004 was used to develop the model and an independent dataset (year 2005) for validation purposes. For all three locations, the empirical model explains more than 95% of UV transmissivity variability due to changes in the two independent variables. In addition, the coefficients of the models show that when the slant ozone amount decreases 1%, UV transmissivity and, therefore, UVER values increase approximately 1.33%–1.35%. The coefficients also show that when the clearness index decreases 1%, UV transmissivity increase 0.75%–0.78%. The validation of the model provided satisfactory results, with low mean absolute bias error (MABE), about 7%–8% for all stations. Finally, a one-day ahead forecast of the UV Index for cloud-free cases is presented, assuming the persistence in the total ozone column. The percentage of days with differences between forecast and experimental UVI lower than ±0.5 unit and ±1 unit is within the range of 28% to 37%, and 60% to 75%, respectively. Therefore, the empirical model proposed in this work provides reliable forecast cloud-free UVI in order to inform the public about the possible harmful effects of UV radiation over-exposure
    corecore