277 research outputs found

    Simultaneous Graph Embeddings with Fixed Edges

    Get PDF
    We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open

    Simultaneous Graph Embeddings with Fixed Edges

    Get PDF
    We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Intersection Graphs of Rays and Grounded Segments

    Get PDF
    We consider several classes of intersection graphs of line segments in the plane and prove new equality and separation results between those classes. In particular, we show that: (1) intersection graphs of grounded segments and intersection graphs of downward rays form the same graph class, (2) not every intersection graph of rays is an intersection graph of downward rays, and (3) not every intersection graph of rays is an outer segment graph. The first result answers an open problem posed by Cabello and Jej\v{c}i\v{c}. The third result confirms a conjecture by Cabello. We thereby completely elucidate the remaining open questions on the containment relations between these classes of segment graphs. We further characterize the complexity of the recognition problems for the classes of outer segment, grounded segment, and ray intersection graphs. We prove that these recognition problems are complete for the existential theory of the reals. This holds even if a 1-string realization is given as additional input.Comment: 16 pages 12 Figure

    Chaos in drive systems

    Get PDF
    The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions

    On the Recognition of Four-Directional Orthogonal Ray Graphs

    Get PDF
    Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G 1,G 2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph TeX with both directed and undirected edges, such that G has a 4-DORG representation if and only if TeX has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V ∖ U is not given, we can still efficiently check whether G has a 3-DORG representation

    b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

    Get PDF
    A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic

    Structural parameterizations for boxicity

    Full text link
    The boxicity of a graph GG is the least integer dd such that GG has an intersection model of axis-aligned dd-dimensional boxes. Boxicity, the problem of deciding whether a given graph GG has boxicity at most dd, is NP-complete for every fixed d2d \ge 2. We show that boxicity is fixed-parameter tractable when parameterized by the cluster vertex deletion number of the input graph. This generalizes the result of Adiga et al., that boxicity is fixed-parameter tractable in the vertex cover number. Moreover, we show that boxicity admits an additive 11-approximation when parameterized by the pathwidth of the input graph. Finally, we provide evidence in favor of a conjecture of Adiga et al. that boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page

    The Complexity of Drawing Graphs on Few Lines and Few Planes

    Full text link
    It is well known that any graph admits a crossing-free straight-line drawing in R3\mathbb{R}^3 and that any planar graph admits the same even in R2\mathbb{R}^2. For a graph GG and d{2,3}d \in \{2,3\}, let ρd1(G)\rho^1_d(G) denote the minimum number of lines in Rd\mathbb{R}^d that together can cover all edges of a drawing of GG. For d=2d=2, GG must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For d{2,3}d\in\{2,3\}, we prove that deciding whether ρd1(G)k\rho^1_d(G)\le k for a given graph GG and integer kk is R{\exists\mathbb{R}}-complete. - Since NPR\mathrm{NP}\subseteq{\exists\mathbb{R}}, deciding ρd1(G)k\rho^1_d(G)\le k is NP-hard for d{2,3}d\in\{2,3\}. On the positive side, we show that the problem is fixed-parameter tractable with respect to kk. - Since RPSPACE{\exists\mathbb{R}}\subseteq\mathrm{PSPACE}, both ρ21(G)\rho^1_2(G) and ρ31(G)\rho^1_3(G) are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to ρ21\rho^1_2 or ρ31\rho^1_3 sometimes require irrational coordinates. - Let ρ32(G)\rho^2_3(G) be the minimum number of planes in R3\mathbb{R}^3 needed to cover a straight-line drawing of a graph GG. We prove that deciding whether ρ32(G)k\rho^2_3(G)\le k is NP-hard for any fixed k2k \ge 2. Hence, the problem is not fixed-parameter tractable with respect to kk unless P=NP\mathrm{P}=\mathrm{NP}
    corecore