277 research outputs found
Simultaneous Graph Embeddings with Fixed Edges
We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open
Simultaneous Graph Embeddings with Fixed Edges
We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open
Optimality program in segment and string graphs
Planar graphs are known to allow subexponential algorithms running in time
or for most of the paradigmatic
problems, while the brute-force time is very likely to be
asymptotically best on general graphs. Intrigued by an algorithm packing curves
in by Fox and Pach [SODA'11], we investigate which
problems have subexponential algorithms on the intersection graphs of curves
(string graphs) or segments (segment intersection graphs) and which problems
have no such algorithms under the ETH (Exponential Time Hypothesis). Among our
results, we show that, quite surprisingly, 3-Coloring can also be solved in
time on string graphs while an algorithm running
in time for 4-Coloring even on axis-parallel segments (of unbounded
length) would disprove the ETH. For 4-Coloring of unit segments, we show a
weaker ETH lower bound of which exploits the celebrated
Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over
to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent
Dominating Set.Comment: 19 pages, 15 figure
Intersection Graphs of Rays and Grounded Segments
We consider several classes of intersection graphs of line segments in the
plane and prove new equality and separation results between those classes. In
particular, we show that: (1) intersection graphs of grounded segments and
intersection graphs of downward rays form the same graph class, (2) not every
intersection graph of rays is an intersection graph of downward rays, and (3)
not every intersection graph of rays is an outer segment graph. The first
result answers an open problem posed by Cabello and Jej\v{c}i\v{c}. The third
result confirms a conjecture by Cabello. We thereby completely elucidate the
remaining open questions on the containment relations between these classes of
segment graphs. We further characterize the complexity of the recognition
problems for the classes of outer segment, grounded segment, and ray
intersection graphs. We prove that these recognition problems are complete for
the existential theory of the reals. This holds even if a 1-string realization
is given as additional input.Comment: 16 pages 12 Figure
Chaos in drive systems
The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions
On the Recognition of Four-Directional Orthogonal Ray Graphs
Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G 1,G 2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph TeX with both directed and undirected edges, such that G has a 4-DORG representation if and only if TeX has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V ∖ U is not given, we can still efficiently check whether G has a 3-DORG representation
b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs
A b-coloring of a graph is a proper coloring such that every color class
contains a vertex that is adjacent to all other color classes. The b-chromatic
number of a graph G, denoted by \chi_b(G), is the maximum number t such that G
admits a b-coloring with t colors. A graph G is called b-continuous if it
admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and
b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of
G, and every induced subgraph H_2 of H_1.
We investigate the b-chromatic number of graphs with stability number two.
These are exactly the complements of triangle-free graphs, thus including all
complements of bipartite graphs. The main results of this work are the
following:
- We characterize the b-colorings of a graph with stability number two in
terms of matchings with no augmenting paths of length one or three. We derive
that graphs with stability number two are b-continuous and b-monotonic.
- We prove that it is NP-complete to decide whether the b-chromatic number of
co-bipartite graph is at most a given threshold.
- We describe a polynomial time dynamic programming algorithm to compute the
b-chromatic number of co-trees.
- Extending several previous results, we show that there is a polynomial time
dynamic programming algorithm for computing the b-chromatic number of
tree-cographs. Moreover, we show that tree-cographs are b-continuous and
b-monotonic
Advances on Testing C-Planarity of Embedded Flat Clustered Graphs
We show a polynomial-time algorithm for testing c-planarity of embedded flat
clustered graphs with at most two vertices per cluster on each face.Comment: Accepted at GD '1
Structural parameterizations for boxicity
The boxicity of a graph is the least integer such that has an
intersection model of axis-aligned -dimensional boxes. Boxicity, the problem
of deciding whether a given graph has boxicity at most , is NP-complete
for every fixed . We show that boxicity is fixed-parameter tractable
when parameterized by the cluster vertex deletion number of the input graph.
This generalizes the result of Adiga et al., that boxicity is fixed-parameter
tractable in the vertex cover number.
Moreover, we show that boxicity admits an additive -approximation when
parameterized by the pathwidth of the input graph.
Finally, we provide evidence in favor of a conjecture of Adiga et al. that
boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page
The Complexity of Drawing Graphs on Few Lines and Few Planes
It is well known that any graph admits a crossing-free straight-line drawing
in and that any planar graph admits the same even in
. For a graph and , let denote
the minimum number of lines in that together can cover all edges
of a drawing of . For , must be planar. We investigate the
complexity of computing these parameters and obtain the following hardness and
algorithmic results.
- For , we prove that deciding whether for a
given graph and integer is -complete.
- Since , deciding is NP-hard for . On the positive side, we show that the problem
is fixed-parameter tractable with respect to .
- Since , both and
are computable in polynomial space. On the negative side, we show
that drawings that are optimal with respect to or
sometimes require irrational coordinates.
- Let be the minimum number of planes in needed
to cover a straight-line drawing of a graph . We prove that deciding whether
is NP-hard for any fixed . Hence, the problem is
not fixed-parameter tractable with respect to unless
- …