148 research outputs found

    Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters

    Get PDF
    We identified barley aquaporins and demonstrated that one, HvPIP2;1, transports water and CO2. Regarding water homeostasis in plants, regulations of aquaporin expression were observed in many plants under several environmental stresses. Under salt stress, a number of plasma membrane-type aquaporins were down-regulated, which can prevent continuous dehydration resulting in cell death. The leaves of transgenic rice plants that expressed the largest amount of HvPIP2;1 showed a 40% increase in internal CO2 conductance compared with leaves of wild-type rice plants. The rate of CO2 assimilation also increased in the transgenic plants. The goal of our plant aquaporin research is to determine the key aquaporin species responsible for water and CO2 transport, and to improve plant water relations, stress tolerance, CO2 uptake or assimilation, and plant productivity via molecular breeding of aquaporins.</p

    Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance

    Get PDF
    It has previously been shown that hydraulic conductance in bur oak leaves (Quercus macrocarpa Michx.), measured with the high pressure flow meter technique (HPFM), can significantly increase within 30 min following exposure to high irradiance. The present study investigated whether this increase could be explained by an increase in the cell-to-cell pathway and whether the response is linked to changes in the transcript level corresponding to aquaporin genes. Four cDNA sequences showing high similarity to members of the aquaporin gene family from other plant species were characterized from bur oak leaves and the expression levels of these cDNA sequences were examined in leaves by quantitative real-time PCR (QRT-PCR). No change was found in the relative transcript abundance corresponding to these four putative aquaporin genes in leaves with light-induced high hydraulic conductance (exposed to high irradiance) compared to leaves with low hydraulic conductance (exposed to low irradiance). However, in sun leaves that were exposed to different light levels prior to leaf collection (full sunlight, shade, and covered with aluminium foil for 16 h), the relative transcript levels of two of the putative aquaporin genes increased several-fold in shaded leaves compared to the sun-exposed or covered leaves. When the leaves were pressure-infiltrated with the apoplastic tracer dye trisodium 3-hydroxy-5,8,10-pyrenetrisulphonate (PTS3, 0.02%), there was no change in the PTS3 concentration of leaf exudates collected in ambient light or in high irradiance, but there was a small apoplastic acidification. There was also no change in PTS3 concentration between the leaves infiltrated under high irradiance with 0.02% PTS3 or with 0.1 mM HgCl2 in 0.02% PTS3. The results suggest that the putative aquaporin genes that were identified in the present study probably do not play a role in the light responses of hydraulic conductance at the transcript level, but they may function in regulating water homeostasis in leaves adapted to different light conditions. In addition, it is shown that high irradiance induced changes in the pH of the apoplast and that there does not appear to be a significant shift to the cell-to-cell mediated water transport in bur oak leaves exposed to high irradiance as measured by the apoplastic tracer dye

    OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress

    Get PDF
    Background: Na+ exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K+ transporter (HKT) family have been demonstrated to mediate leaf blade-Na+ exclusion upon salinity stress via Na+-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na+ exclusion mechanism in rice remain to be elucidated. Results: Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na+ transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na+ selectivity among cations tested, including Li+, Na+, K+, Rb+, Cs+, and NH4 +, in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na+ overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, 22Na+ tracer experiments using peduncles of RNAi and WT plants suggested xylem Na+ unloading by OsHKT1;4. Conclusions: Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na+ exclusion in stems together with leaf sheaths, thus excluding Na+ from leaf blades of a japonica rice cultivar in the reproductive growth stage, but the contribution is low when the plants are in the vegetative growth stage

    Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata

    Get PDF
    Programmed cell death (PCD) is a key element in normal plant growth and development which may also be induced by various abiotic and biotic stress factors including salt stress. In the present study, morphological, biochemical, and physiological responses of the theoretically immortal unicellular freshwater green alga Micrasterias denticulata were examined after salt (200 mM NaCl or 200 mM KCl) and osmotic stress induced by iso-osmotic sorbitol. KCl caused morphological changes such as cytoplasmic vacuolization, extreme deformation of mitochondria, and ultrastructural changes of Golgi and ER. However, prolonged salt stress (24 h) led to the degradation of organelles by autophagy, a special form of PCD, both in NaCl- and KCl-treated cells. This was indicated by the enclosure of organelles by ER-derived double membranes. DNA of NaCl- and KCl-stressed cells but not of sorbitol-treated cells showed a ladder-like pattern on agarose gel, which means that the ionic rather than the osmotic component of salt stress leads to the activation of the responsible endonuclease. DNA laddering during salt stress could be abrogated by addition of Zn2+. Neither cytochrome c release from mitochondria nor increase in caspase-3-like activity occurred after salt stress. Reactive oxygen species could be detected within 5 min after the onset of salt and osmotic stress. Respiration, photosynthetic activity, and pigment composition indicated an active metabolism which supports programmed rather than necrotic cell death in Micrasterias after salt stress

    Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants

    Get PDF

    Synthesis and properties of alkyl-substituted BEDT-TTF molecules for organic thin film devices

    No full text
    In order to prepare good thin films based on organic donor molecules, three new alkyl-substituted BEDT-TTF (ET) molecules and its analogs, C6_{6}ET 1, BC6_{6}ET 2 and C6_{6}EDT-DC 3 are synthesized. Solubilities of the present materials are much improved from ET. C6_{6}ET and BC6_{6}ET have almost the same donor ability as that of ET. These three materials form good thin films on a SiO2_{2} substrate by the solution cast method. Key words. Synthesis, thin films, organic conductors.
    corecore