306 research outputs found

    Gender-Specific Modulation of the Response to Arterial Injury by Soluble Guanylate Cyclase α1

    Get PDF
    Objective: Soluble guanylate cyclase (sGC), a heterodimer composed of α and β subunits, synthesizes cGMP in response to nitric oxide (NO). NO modulates vascular tone and structure but the relative contributions of cGMP-dependent versus cGMP-independent mechanisms remain uncertain. We studied the response to vascular injury in male (M) and female (F) mice with targeted deletion of exon 6 of the sGCα1 subunit (sGCα1-/-), resulting in a non-functional heterodimer. Methods: We measured aortic cGMP levels and mRNA transcripts encoding sGC α1, α2, and β1 subunits in wild type (WT) and sGCa1-/- mice. To study the response to vascular injury, BrdU-incorporation and neointima formation (maximum intima to media (I/M) ratio) were determined 5 and 28 days after carotid artery ligation, respectively. Results: Aortic cGMP levels were 4-fold higher in F than in M mice in both genotypes, and, within each gender, 4-fold higher in WT than in sGCa1-/-. In contrast, sGCα1, sGCα2, and sGCβ1 mRNA expression did not differ between groups. 3H-thymidine incorporation in cultured sGCa1-/- smooth muscle cells (SMC) was 27%±12% lower than in WT SMC and BrdU-incorporation in carotid arteries 5 days after ligation was significantly less in sGCa1-/- M than in WT M. Neointima area and I/M 28 days after ligation were 65% and 62% lower in sGCa1-/- M than in WT M mice (p<0,05 for both) but were not different in F mice. Conclusion: Functional deletion of sGCa1 resulted in reduced cGMP levels in male sGCa1-/- mice and a gender-specific effect on the adaptive response to vascular injury

    The Belgian trial with azithromycin for acute COPD exacerbations requiring hospitalization: an investigator-initiated study protocol for a multicenter, randomized, double-blind, placebo-controlled trial

    Get PDF
    Background: Long-term use of macrolide antibiotics is effective to prevent exacerbations in chronic obstructive pulmonary disease (COPD). As risks and side effects of long-term intervention outweigh the benefits in the general COPD population, the optimal dose, duration of treatment, and target population are yet to be defined. Hospitalization for an acute exacerbation (AE) of COPD may offer a targeted risk group and an obvious risk period for studying macrolide interventions. Methods/design: Patients with COPD, hospitalized for an AE, who have a smoking history of > 10 pack-years and had > 1 exacerbation in the previous year will be enrolled in a multicenter, randomized, double-blind, placebo-controlled trial (NCT02135354). On top of a standardized treatment of systemic corticosteroids and antibiotics, subjects will be randomized to receive either azithromycin or placebo during 3 months, at an uploading dose of 500 mg once a day for 3 days, followed by a maintenance dose of 250 mg once every 2 days. The primary endpoint is the time-to-treatment failure during the treatment phase (ie, from the moment of randomization until the end of intervention). Treatment failure is a novel composite endpoint defined as either death, the admission to intensive care or the requirement of additional systemic steroids or new antibiotics for respiratory reasons, or the diagnosis of a new AE after discharge. Discussion: We investigate whether azithromycin initiated at the onset of a severe exacerbation, with a limited duration and at a low dose, might be effective and safe in the highest risk period during and immediately after the acute event. If proven effective and safe, this targeted approach may improve the treatment of severe AEs and redirect the preventive use of azithromycin in COPD to a temporary intervention in the subgroup with the highest unmet needs

    Randomised controlled trial of adjunctive inspiratory muscle training for patients with COPD.

    Get PDF
    BACKGROUND: This study aimed to investigate whether adjunctive inspiratory muscle training (IMT) can enhance the well-established benefits of pulmonary rehabilitation (PR) in patients with COPD. METHODS: 219 patients with COPD (FEV1: 42%±16% predicted) with inspiratory muscle weakness (PImax: 51±15 cm H2O) were randomised into an intervention group (IMT+PR; n=110) or a control group (Sham-IMT+PR; n=109) in this double-blind, multicentre randomised controlled trial between February 2012 and October 2016 (ClinicalTrials.gov NCT01397396). Improvement in 6 min walking distance (6MWD) was a priori defined as the primary outcome. Prespecified secondary outcomes included respiratory muscle function and endurance cycling time. FINDINGS: No significant differences between the intervention group (n=89) and the control group (n=85) in improvements in 6MWD were observed (0.3 m, 95% CI -13 to 14, p=0.967). Patients who completed assessments in the intervention group achieved larger gains in inspiratory muscle strength (effect size: 1.07, p<0.001) and endurance (effect size: 0.79, p<0.001) than patients in the control group. 75 s additional improvement in endurance cycling time (95% CI 1 to 149, p=0.048) and significant reductions in Borg dyspnoea score at isotime during the cycling test (95% CI -1.5 to -0.01, p=0.049) were observed in the intervention group. INTERPRETATION: Improvements in respiratory muscle function after adjunctive IMT did not translate into additional improvements in 6MWD (primary outcome). Additional gains in endurance time and reductions in symptoms of dyspnoea were observed during an endurance cycling test (secondary outcome) TRIAL REGISTRATION NUMBER: NCT01397396; Results

    Standardisation of clinical assessment, management and follow-up of acute hospitalised exacerbation of copd: A europe-wide consensus

    Get PDF
    Background: Despite hospitalization for exacerbation being a high-risk event for morbidity and mortality, there is little consensus globally regarding the assessment and management of hospitalised exacerbations of COPD. We aimed to establish a consensus list of symptoms, physiological measures, clinical scores, patient questionnaires and investigations to be obtained at time of hospitalised COPD exacerbation and follow-up. Methods: A modified Delphi online survey with pre-defined consensus of importance, feasibility and frequency of measures at hospitalisation and follow-up of a COPD exacerbation was undertaken. Findings: A total of 25 COPD experts from 18 countries contributed to all 3 rounds of the survey. Experts agreed that a detailed history and examination were needed. Experts also agreed on which treatments are needed and how soon these should be delivered. Experts recommended that a full blood count, renal function, C-reactive protein and cardiac blood biomarkers (BNP and troponin) should be measured within 4 hours of admission and that the modified Medical Research Council dyspnoea scale (mMRC) and COPD assessment test (CAT) should be performed at time of exacerbation and follow-up. Experts encouraged COPD clinicians to strongly consider discussing palliative care, if indicated, at time of hospitalisation. Interpretation: This Europe-wide consensus document is the first attempt to standardise the assessment and care of patients hospitalised for COPD exacerbations. This should be regarded as the starting point to build knowledge and evidence on patients hospitalised for COPD exacerbations

    The Red Sea, Coastal Landscapes, and Hominin Dispersals

    Get PDF
    This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization

    Treatment failure and hospital readmissions in severe COPD exacerbations treated with azithromycin versus placebo - A post-hoc analysis of the BACE randomized controlled trial

    Get PDF
    Background: In the BACE trial, a 3-month (3 m) intervention with azithromycin, initiated at the onset of an infectious COPD exacerbation requiring hospitalization, decreased the rate of a first treatment failure (TF); the composite of treatment intensification (TI), step-up in hospital care (SH) and mortality. Objectives: (1) To investigate the intervention's effect on recurrent events, and (2) to identify clinical subgroups most likely to benefit, determined from the incidence rate of TF and hospital readmissions. Methods: Enrolment criteria included the diagnosis of COPD, a smoking history of ≥10 pack-years and ≥ 1 exacerbation in the previous year. Rate ratio (RR) calculations, subgroup analyses and modelling of continuous variables using splines were based on a Poisson regression model, adjusted for exposure time. Results: Azithromycin significantly reduced TF by 24% within 3 m (RR = 0.76, 95%CI:0.59;0.97, p = 0.031) through a 50% reduction in SH (RR = 0.50, 95%CI:0.30;0.81, p = 0.006), which comprised of a 53% reduction in hospital readmissions (RR = 0.47, 95%CI:0.27;0.80; p = 0.007). A significant interaction between the intervention, CRP and blood eosinophil count at hospital admission was found, with azithromycin significantly reducing hospital readmissions in patients with high CRP (> 50 mg/L, RR = 0.18, 95%CI:0.05;0.60, p = 0.005), or low blood eosinophil count (<300cells/μL, RR = 0.33, 95%CI:0.17;0.64, p = 0.001). No differences were observed in treatment response by age, FEV1, CRP or blood eosinophil count in continuous analyses. Conclusions: This post-hoc analysis of the BACE trial shows that azithromycin initiated at the onset of an infectious COPD exacerbation requiring hospitalization reduces the incidence rate of TF within 3 m by preventing hospital readmissions. In patients with high CRP or low blood eosinophil count at admission this treatment effect was more pronounced, suggesting a potential role for these biomarkers in guiding azithromycin therapy. Trial registration: ClinicalTrials.gov number. NCT02135354. © 2019 The Author(s)

    On the Mechanics Underlying the Reservoir-Excess Separation in Systemic Arteries and their Implications for Pulse Wave Analysis

    Get PDF
    Several works have separated the pressure waveform p in systemic arteries into reservoir pr and excess pexc components, p = pr + pexc, to improve pulse wave analysis, using windkessel models to calculate the reservoir pressure. However, the mechanics underlying this separation and the physical meaning of pr and pexc have not yet been established. They are studied here using the time-domain, inviscid and linear one-dimensional (1-D) equations of blood flow in elastic vessels. Solution of these equations in a distributed model of the 55 larger human arteries shows that pr calculated using a two-element windkessel model is space-independent and well approximated by the compliance-weighted space-average pressure of the arterial network. When arterial junctions are well-matched for the propagation of forward-travelling waves, pr calculated using a three-element windkessel model is space-dependent in systole and early diastole and is made of all the reflected waves originated at the terminal (peripheral) reflection sites, whereas pexc is the sum of the rest of the waves, which are obtained by propagating the left ventricular flow ejection without any peripheral reflection. In addition, new definitions of the reservoir and excess pressures from simultaneous pressure and flow measurements at an arbitrary location are proposed here. They provide valuable information for pulse wave analysis and overcome the limitations of the current two- and three-element windkessel models to calculate pr

    APOL1 C-Terminal Variants May Trigger Kidney Disease through Interference with APOL3 Control of Actomyosin

    Get PDF
    The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.info:eu-repo/semantics/publishe
    corecore