289 research outputs found

    User behaviour analysis and personalized TV content recommendation

    Get PDF
    Nowadays, there are many channels and television (TV) programs available, and when the viewer is confronted with this amount of information has difficulty in deciding which wants to see. However, there are moments of the day that viewers see always the same channels or programs, that is, viewers have TV content consumption habits. The aim of this paper was to develop a recommendation system that to be able to recommend TV content considering the viewer profile, time and weekday. For the development of this paper, were used Design Science Research (DSR) and Cross Industry Standard Process for Data Mining (CRISP-DM) methodologies. For the development of the recommendation model, two approaches were considered: a deterministic approach and a Machine Learning (ML) approach. In the ML approach, K-means algorithm was used to be possible to combine STBs with similar profiles. In the deterministic approach the behaviors of the viewers are adjusted to a profile that will allow you to identify the content you prefer. Here, recommendation system analyses viewer preferences by hour and weekday, allowing customization of the system, considering your historic, recommending what he wants to see at certain time and weekday. ML approach was not used due to amount of data extracted and computational resources available. However, through deterministic methods it was possible to develop a TV content recommendation model considering the viewer profile, the weekday and the hour. Thus, with the results it was possible to understand which viewer profiles where the ML can be used.COMPETE: POCI-01-0145-FEDER-007043 and FCT (Fundação para a CiĂȘncia e Tecnologia) within the Project Scope: UID/CEC/00319/2013 and was developed in partnership with AlticeLab

    Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq

    Get PDF
    Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies

    Identification of Equid herpesvirus 2 in tissue-engineered equine tendon

    Get PDF
    Background: Incidental findings of virus-like particles were identified following electron microscopy of tissue-engineered tendon constructs (TETC) derived from equine tenocytes. We set out to determine the nature of these particles, as there are few studies which identify virus in tendons per se, and their presence could have implications for tissue-engineering using allogenic grafts. Methods: Virus particles were identified in electron microscopy of TETCs. Virion morphology was used to initially hypothesise the virus identity.  Next generation sequencing was implemented to identify the virus. A pan herpesvirus PCR was used to validate the RNASeq findings using an independent platform. Histological analysis and biochemical analysis was undertaken on the TETCs. Results: Morphological features suggested the virus to be either a retrovirus or herpesvirus. Subsequent next generation sequencing mapped reads to Equid herpesvirus 2 (EHV2). Histological examination and biochemical testing for collagen content revealed no significant differences between virally affected TETCs and non-affected TETCs. An independent set of equine superficial digital flexor tendon tissue (n=10) examined using designed primers for specific EHV2 contigs identified at sequencing were negative. These data suggest that EHV is resident in some equine tendon. Conclusions: EHV2 was demonstrated in equine tenocytes for the first time; likely from in vivo infection. The presence of EHV2 could have implications to both tissue-engineering and tendinopathy

    A Blockchain-Based Approach Towards Overcoming Financial Fraud in Public Sector Services

    Get PDF
    In financial markets it is common for companies and individuals to invest into foreign companies. To avoid the double taxation of investors on dividend payment - both in the country where the profit is generated as well as the country of residence - most governments have entered into bilateral double taxation treaties, whereby investors can claim a tax refund in the country where the profit is generated. Due to easily forgeable documents and insufficient international exchange of information between tax authorities, investors illegitimately apply for these tax returns causing an estimated damage of 1.8 billion USD, for example, in Denmark alone. This paper assesses the potential of a blockchain database to provide a feasible solution for overcoming this problem against the backdrop of recent advances in the public sector and the unique set of blockchain capacities. Towards this end, we develop and evaluate a blockchain-based prototype system aimed at eliminating this type of tax fraud and increasing transparency regarding the flow of dividends. While the prototype is based on the specific context of the Danish tax authority, we discuss how it can be generalized for tracking international and interorganizational transactions

    Attenuated total reflection Fourier‐transform infrared ( ATR ‐ FTIR ) spectroscopy to diagnose osteoarthritis in equine serum

    Get PDF
    Background Reliable and validated biomarkers for osteoarthritis (OA) are currently lacking. Objective To develop an accurate and minimally invasive method to assess OA‐affected horses and provide potential spectral markers indicative of disease. Study design Observational, cross‐sectional study. Methods Our cohort consisted of 15 horses with OA and 48 without clinical signs of the disease, which were used as controls. Attenuated total reflection Fourier‐transform infrared (ATR‐FTIR) spectroscopy was used to investigate serum samples (50 ÎŒL) collected from these horses. Spectral processing and multivariate analysis revealed differences and similarities, allowing for detection of spectral biomarkers that discriminated between the two cohorts. A supervised classification algorithm, namely principal component analysis coupled with quadratic discriminant analysis (PCA‐QDA), was applied to evaluate the diagnostic accuracy. Results Segregation between the two different cohorts, OA‐affected and controls, was achieved with 100% sensitivity and specificity. The six most discriminatory peaks were attributed to proteins and lipids. Four of the spectral peaks were elevated in OA horses, which could be potentially due to an increase in lipids, protein expression levels and collagen, all of which have been previously reported in OA. Two peaks were found decreased and were tentatively assigned to the reduction of proteoglycan content that is observed during OA. Main limitations The control group had a wide range of ages and breeds. Pre‐symptomatic OA cases were not included. Therefore, it remains unknown whether this test could be also used as an early diagnostic tool. Conclusions This spectrochemical approach could provide an accurate and cost‐effective blood test, facilitating point‐of‐care diagnosis of equine OA

    Synovial Fluid Metabolites Differentiate between Septic and Nonseptic Joint Pathologies

    Get PDF
    Osteoarthritis (OA), osteochondrosis (OC), and synovial sepsis in horses cause loss of function and pain. Reliable biomarkers are required to achieve accurate and rapid diagnosis, with synovial fluid (SF) holding a unique source of biochemical information. Nuclear magnetic resonance (NMR) spectroscopy allows global metabolite analysis of a small volume of SF, with minimal sample preprocessing using a noninvasive and nondestructive method. Equine SF metabolic profiles from both nonseptic joints (OA and OC) and septic joints were analyzed using 1D 1H NMR spectroscopy. Univariate and multivariate statistical analyses were used to identify differential metabolite abundance between groups. Metabolites were annotated via 1H NMR using 1D NMR identification software Chenomx, with identities confirmed using 1D 1H and 2D 1H 13C NMR. Multivariate analysis identified separation between septic and nonseptic groups. Acetate, alanine, citrate, creatine phosphate, creatinine, glucose, glutamate, glutamine, glycine, phenylalanine, pyruvate, and valine were higher in the nonseptic group, while glycylproline was higher in sepsis. Multivariate separation was primarily driven by glucose; however, partial-least-squares discriminant analysis plots with glucose excluded demonstrated the remaining metabolites were still able to discriminate the groups. This study demonstrates that a panel of synovial metabolites can distinguish between septic and nonseptic equine SF, with glucose the principal discriminator

    Ex-Vivo Equine Cartilage Explant Osteoarthritis Model - A Metabolomics and Proteomics Study.

    Get PDF
    Osteoarthritis is an age-related degenerative musculoskeletal disease characterised by loss of articular cartilage, synovitis and subchondral bone sclerosis. Osteoarthritis pathogenesis is yet to be fully elucidated with no osteoarthritis specific biomarkers in clinical use. Ex-vivo equine cartilage explants (n=5) were incubated in TNF-α/IL-1ÎČ supplemented culture media for 8 days, with media removed and replaced at 2, 5 and 8 days. Acetonitrile metabolite extractions of 8 day cartilage explants and media samples at all time points underwent 1D 1H nuclear magnetic resonance metabolomic analysis with media samples also undergoing mass spectrometry proteomic analysis. Within the cartilage, glucose and lysine were elevated following TNF-α/IL-1ÎČ treatment whilst adenosine, alanine, betaine, creatine, myo-inositol and uridine decreased. Within the culture media, four, four and six differentially abundant metabolites and 154, 138 and 72 differentially abundant proteins were identified at 1-2 days, 3-5 days and 6-8 days respectively, including reduced alanine and increased isoleucine, enolase 1, vimentin and lamin A/C following treatment. Nine potential novel osteoarthritis neopeptides were elevated in treated media. Implicated pathways were dominated by those involved in cellular movement. Our innovative study has provided insightful information on early osteoarthritis pathogenesis, enabling potential translation for clinical markers and possible new therapeutic targets

    Designing an information system for updating land records in Bangladesh: action design ethnographic research (ADER)

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Information Systems (IS) has developed through adapting, generating and applying diverse methodologies, methods, and techniques from reference disciplines. Further, Action Design Research (ADR) has recently developed as a broad research method that focuses on designing and redesigning IT and IS in organizational contexts. This paper reflects on applying ADR in a complex organizational context in a developing country. It shows that ADR requires additional lens for designing IS in such a complex organizational context. Through conducting ADR, it is seen that an ethnographic framework has potential complementarities for understanding complex contexts thereby enhancing the ADR processes. This paper argues that conducting ADR with an ethnographic approach enhances design of IS and organizational contexts. Finally, this paper aims presents a broader methodological framework, Action Design Ethnographic Research (ADER), for designing artefacts as well as IS. This is illustrated through the case of a land records updating service in Bangladesh
    • 

    corecore