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List of abbreviations 

ATR-FTIR: attenuated total reflection Fourier-transform infrared 

CI: confidence interval 

OA: osteoarthritis 

PCA-LDA/QDA: principal component analysis - linear discriminant analysis/ quadratic 
discriminant analysis 

 

Summary 

Background: Reliable and validated biomarkers for osteoarthritis (OA) are currently lacking.  

 

Objective: To develop an accurate and minimally invasive method to assess OA-affected 

horses and provide potential spectral markers indicative of disease. 

 

Study design: Observational, cross-sectional study. 

 

Methods: Our cohort consisted of 15 horses with OA and 48 without clinical signs of the 

disease, which were used as controls. Attenuated total reflection Fourier-transform infrared 

(ATR-FTIR) spectroscopy was used to investigate serum samples (50 μL) collected from 

these horses. Spectral processing and multivariate analysis revealed differences and 

similarities, allowing for detection of spectral biomarkers that discriminated between the two 

cohorts. A supervised classification algorithm, namely principal component analysis coupled 

with quadratic discriminant analysis (PCA-QDA), was applied to evaluate the diagnostic 

accuracy. 

Results: Segregation between the two different cohorts, OA-affected and controls, was 

achieved with 100% sensitivity and specificity. The six most discriminatory peaks were 

attributed to proteins and lipids. Four of the spectral peaks were elevated in OA horses, which 

could be potentially due to an increase in lipids, protein expression levels and collagen, all of 

which have been previously reported in OA. Two peaks were found decreased and were 

tentatively assigned to the reduction of proteoglycan content that is observed during OA. 
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Main limitations: The control group had a wide range of ages and breeds. Pre-symptomatic 

OA cases were not included. Therefore, it remains unknown whether this test could be also 

used as an early diagnostic tool. 

 

Conclusions: This spectrochemical approach could provide an accurate and cost-effective 

blood test, facilitating point-of-care diagnosis of equine OA. 

 

Introduction 

 Osteoarthritis (OA) accounts for an estimated 60% of all observed lameness being in 

horses [1]. Current diagnosis of OA is based on clinical signs, imaging techniques or 

molecular biomarkers using tissue or biofluids, such as synovial fluid. However, there is yet 

no single biomarker that is considered accurate enough in OA detection and panels of 

different markers are preferred instead [1,2]. An ideal marker would be minimally invasive 

and require a cost-effective and less laborious analytical approach. 

Indications of clinical equine OA can include swelling of the joint or pain during 

locomotion. Currently, a primary diagnosis is based on gait analysis/lameness assessment, 

diagnostic imaging and arthroscopy [3]. The results of a recent symposium have also been 

published, aiming to identify diagnostic/prognostic biomarkers and promising analytic 

techniques towards detection of the condition [1]. Analytical approaches included 

metabolomics, proteomics and spectroscopy. One study used a panel of biomarkers to 

improve the diagnostic capability in OA-affected horses using synovial fluid and serum; 

however, this required the use of expensive and laborious assays [2]. 

 Vibrational spectroscopy is a promising method for diagnostics of a great variety of 

disorders. Minimally- or non-invasive biofluids, such as blood, urine, tears or saliva, have 

been investigated as important sources of biological information [4]. Spectrochemical 
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methods generate vibrational movements within the chemical bonds of a sample’s 

constituents, producing a “spectral fingerprint”. The spectra provide information about the 

chemical bonds, their structure and function; this allows one to make a reference range of 

what represents normal and then classify, using sophisticated computational algorithms, 

samples outside this range into emerging or developed disease. 

 Attenuated total refection Fourier-transform infrared (ATR-FTIR) spectroscopy uses 

an internal reflection element to direct the IR beam to the sample, thus creating an evanescent 

wave. The latter penetrates the sample a few microns in order to derive its chemical 

information [5]. The use of ATR-FTIR spectroscopy is advantageous in comparison to 

previous FTIR studies (in transmission or transflection mode), as it allows easier sample 

preparation and reduced light scattering which could cause spectral distortion. The main 

objective of this study was to investigate the feasibility of ATR-FTIR spectroscopy to detect 

OA using serum samples recovered from OA-affected horses. We hypothesised that 

circulating biomarkers of disease are reflected in the spectral profile. Using a classification 

algorithm, segregation between the OA and control groups was undertaken and subsequent 

diagnostic accuracy assessed. The levels of the discriminatory spectral markers, indicative of 

disease, were also calculated and correlated with certain bonds within biological molecules. 

 

Materials and Methods 

ATR-FTIR spectra were acquired after blood serum collection from 48 healthy horses 

(average age of 10.1 years [s.d. ± 7.1; range: 1 day-26 years]) of a range of breeds 

(Thoroughbreds and Thoroughbred cross, Cob, Warmblood, Pony, Sporthorses, Irish Draught 

Cross, Shire, Shetland, Part Bred Arab, Welsh, and Trotter)  and 15 Thoroughbred racehorses 

diagnosed with OA (average age of 6.4 years [s.d. ± 1.8; range: 3-10 years]); age was 
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unknown for five controls. The minimum number of animals for a power of 80% was 44 

considering two classes, based on a power test using a two-tailed t-test (data input as mean 

and s.d. in absorbance units of the pre-processed spectra for each class). Horses were 

assigned to the healthy group when no clinical diagnosis of OA was present in their clinical 

records. Horses with a clinical (e.g. gait analysis, diagnostic imaging techniques) or post-

mortem (e.g. gross macroscopic or Mankin/OARSI scoring) diagnosis of OA were assigned 

into the OA group, with OA identified in one or more of the metacarpophalangeal, 

metatarsophalangeal or carpus joints.  

Serum samples were collected and aliquoted into typical 1 ml microtubes. 

Centrifugation followed after blood clotting to discard clot and cellular material. Samples 

were allowed to stand at room temperature for 30 minutes to promote clotting. They were 

then centrifuged at 3500 rpm for 10 mins and the supernatant taken off and aliquoted. 

Samples were stored at -80°C until further use.  For spectroscopic analysis, a volume of 50 

μL serum was used from each horse after thawing, deposited on an IR-reflective slide and left 

to air-dry. A Bruker Tensor 27 FTIR spectrometera with a Helios ATR attachmentb, 

containing a diamond crystal, was used. Spectral resolution was set at 8 cm-1 and 32 scans 

were acquired for each spectrum for optimal signal-to-noise ratio; two times zero-filling was 

used, giving a final 4 cm-1 data-spacing. The diamond crystal was cleaned with distilled water 

after each sample and a background spectrum was collected to eliminate atmospheric 

changes. Five spectra were acquired per blood spot for each donor (Supplementary Item 1). 

Pre-processing and analysis were performed using an in-house developed toolbox 

within MATLAB (IRootLabc) while further classification was performed using lab-made 

routines. Spectral pre-processing (truncation at 1800-900 cm-1, rubberband baseline 

correction, vector normalisation) was first carried out to correct for any non-biological 

differences (e.g. sample thickness) during measurements (Fig 1). Cross-validated principal 
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component analysis followed by linear discriminant analysis (PCA-LDA) and quadratic 

discriminant analysis (PCA-QDA) were applied independently to the spectral dataset. PCA 

reduces the original spectral dataset into a few number of principal components (PCs) 

accounting to the majority of the original explained variance, where the first PC accounts to 

the largest variance, followed by the second, third etc. [6]. Each PC is composed of scores 

and loadings, the first one representing the variance on sample direction, being used to assess 

similarities/dissimilarities between samples and formation of clusters. The loadings represent 

the variance on wavenumber direction, thus showing the weight of each wavenumber to the 

discrimination pattern observed on the PCA scores. Therefore, the loadings profiles can be 

used to extract spectral markers based on a peak detection algorithm, where the wavenumbers 

with highest absolute coefficients are the most important ones towards classification. The 

PCA decomposition takes the form of: ܆ = ୘۾܂ + ۳           (01) 

where ܆ is a matrix containing the spectral dataset; ܂ is a matrix containing the PCA scores; ۾ is a matrix containing the PCA loadings; and ۳ is a matrix containing the residuals. T 

superscript represents the matrix-transpose operation. 

 In PCA-LDA or PCA-QDA, the PCA scores ܂ are used as input variables to a linear 

or quadratic discriminant classifier. PCA-LDA (ܮ௜௞) and PCA-QDA (ܳ௜௞) classification 

scores are calculated in a non-Bayesian form as follows [7; 8]: ܮ௜௞ = ௜ܜ) − ௞)୘۱୮୭୭୪ୣୢିଵ̅ܜ ௜ܜ) − ௞)        (02) ܳ௜௞̅ܜ = ௜ܜ) − ௞)୘۱௞ି̅ܜ ଵ(ܜ௜ −  ௞)        (03)̅ܜ

where ܜ௜ represents the PCA scores for sample ݅; ̅ܜ௞ the mean PCA scores array for class ݇; ۱୮୭୭୪ୣୢ the pooled covariance matrix between the classes; and ۱௞ the variance-covariance 

matrix for class ݇. 
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Both PCA-LDA and PCA-QDA are classification algorithms based on a Mahalanobis 

distance calculation. However, QDA accounts for the variance structure of each class 

individually, whereas LDA assumes classes having similar variances and then uses a single 

pooled covariance matrix among the classes; this usually makes QDA superior [8]. For 

classification, the pre-processed spectra (5 replicas) were averaged for each sample and the 

classes were divided into training (70%; 43 samples: 33 healthy controls, 10 OA) and test 

(30%; 20 samples: 15 healthy controls; 5 OA) sets using the Kennard-Stone sample selection 

algorithm [9]. The training set was used for model construction while the test set for final 

model evaluation. Since the classification was performed on a sample basis, the model output 

was a single value (e.g. -1 or 1) for each sample, thus each horse was classified as either 

healthy or OA; horses with other conditions were not included. Age and breed were not tested 

as a discrimination factor on the algorithms. Sensitivity and specificity values were calculated 

based on the external test set as follows [10]: Sensitivity	(%) = ୘୔୘୔ା୊୒ × 100         (1) 

Speciϐicity	(%) = ୘୒୘୒ା୊୔ × 100         (2) 

where TP stands for true positives; TN for true negatives; FP for false positives; and FN for 

false negatives. 

The two groups were compared with a two-tailed Mann–Whitney U test in GraphPad 

Prism 7.0d. Normality was tested by means of an Anderson-Darling test, where the null 

hypothesis (the data follow a normal distribution) was rejected at a 95% confidence level. A 

P-value ≤0.05 was considered significant. 
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Results 

 Multidimensional PCA scores plot and loadings are depicted in Figure 2A and 2B, 

respectively. Spectral data were initially processed by PCA-LDA in order to discriminate 

control from OA samples. Leave-one-out cross-validated PCA-LDA model was built using 

10 PCs, accounting to 99.97% of cumulative explained variance and achieved an accuracy of 

only 35% (80% sensitivity and 20% specificity). Because of the poor predictive performance 

of PCA-LDA, PCA-QDA model was subsequently applied to classify the groups. PCA-QDA 

(10 PCs, 99.97% of explained variance) achieved the best classification performance, with 

100% accuracy, sensitivity and specificity in the test set. Figure 3A depicts the PCA-QDA 

discriminant function (DF) where the separation of both groups of samples can be seen. The 

few samples overlapping in DF plot are from the training set, which achieved an accuracy of 

85%. A Receiver Operating Characteristic (ROC) curve is shown for the test set in Figure 3B 

[area under the curve (AUC) = 1] and a graphical confusion matrix with the correct 

classification rate for each class in the test set is shown in Figure 3C. 

A PCA loadings plot (Fig 2B) was generated to depict the spectral regions that were 

mostly responsible for the differentiation: 1539 cm-1 (bending vibration of (N-H) of proteins, 

Amide II band; P = 0.01; 95% CI = 0.00044 to 0.00345), 1474 cm-1 (bending vibration of 

(CH2) of proteins/lipids; P = 0.005; 95% CI = -0.00305 to -0.00059), 1400 cm-1 (stretching 

vibration of (COO-) of amino acids and/or bending vibration of (CH3) of proteins; P = 0.2; 

95% CI = -0.00042 to 0.00201), 1304 cm-1 (Amide III band, components of proteins; P 

<0.001; 95% CI = -0.00535 to -0.00232), 1161 cm-1 (stretching vibration of C-OH groups of 

proteins and/or (C-O) and (C-O-C) groups of carbohydrates; P =0.06; 95% CI = -0.00117 to -

0.00002) and 1034 cm-1 (collagen; P<0.001; 95% CI = -0.00267 to -0.00146) (Fig 4) 

(Supplementary Items 2 and 3)[12].  
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Discussion 

 In this study we accurately differentiated between horses with and without OA using 

serum biomarkers. The spectral regions that were responsible for the segregation were mainly 

representative of lipids and proteins. A general increase of absorbance was noticed for the 

majority of the peaks in the OA group, including lipid and protein bands (1474 cm-1, 1304 

cm-1) as well as the collagen region (1034 cm-1) (Fig 4). The increase in lipid and protein 

levels may be attributed to the accumulation of lipids and total fatty acids (such as 

hypercholesterolemia), and increased protein expression levels, which have been previously 

reported in OA [13,14]. Other studies have shown that inflammatory mediators are increased 

in OA in comparison to healthy subjects, which can be reflected outside the joint tissues in 

blood plasma and peripheral blood leukocytes [15-17]. Similar to a number of preceding 

studies demonstrating increased levels of collagen in OA subjects after analysing cartilage or 

blood samples, our results also showed a statistically significant increase of the collagen band 

(1034 cm-1) in OA (Fig 4) [18-22]. For instance, the observed increase may be explained by 

the overexpression of collagen type X, which has been previously found elevated in serum 

samples of OA patients and has been associated with cartilage degradation and inflammation 

[18]. It is also worth noting that Thoroughbred racehorses tend to be young and collagen 

expression can vary according to maturity. In contrast, one peak was decreased in horses with 

OA, namely the Amide II band (1539 cm-1). Two peaks (1400 cm-1 and 1161 cm-1) were not 

significantly different even though they were picked out by the peak selection algorithm in 

IRootLabc. 

Although PCA-LDA has been previously reported as a useful technique to detect 

canine OA [11], this model achieved a low diagnostic accuracy (80% sensitivity, 20% 

specificity) in the current study, indicating a poor classification performance for this dataset. 

However, after classification of the two populations with PCA-QDA, the diagnostic accuracy 
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was exceptionally high, reaching 100% sensitivity and specificity. This could potentially lead 

to a clinical test that would be beneficial for the diagnosis and management for equine OA. 

Blood sampling is minimally invasive thus facilitating clinical monitoring and assessment of 

OA progression. 

 In contrast to traditional molecular approaches, spectroscopic techniques have a great 

advantage in their low cost. Biospectroscopy generates a spectrum indicative of a range of 

biological molecules (proteins, lipids, carbohydrates and nucleic acids) thus generating 

something similar to a multi-marker assay, allowing for more robust results than isolated 

biomarkers. A number of previous studies have employed vibrational spectroscopy using 

synovial fluid or tissue samples to investigate OA [23-26]. Specifically, transmission IR and 

Raman spectroscopies have been successfully employed to interrogate synovial fluid for the 

diagnosis of OA in horses as well as in humans [23,25,26]. A further study used Raman 

spectroscopy to examine the molecular changes accompanying OA, using the articular 

surface area in the knees of rats [24].  

A limitation of the current study was the lack of pre-symptomatic OA cases which 

should be addressed in future studies to determine whether spectroscopy could be utilised as 

an early diagnostic tool. A subgroup analysis showing any potential connection between the 

severity of OA and the spectral peaks would be of definite value, however, outside the scope 

of this preliminary study. Our study was also limited by the wide range of ages and breeds in 

the control group. Larger numbers of animals would be needed for more detailed exploration 

and would also allow to control for differences in the breed or age.   
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Conclusions 

The current study presents novel findings on OA spectroscopic detection using serum. 

Along with the high sensitivity and specificity with which the condition was diagnosed, 

spectral markers of joint degenerative changes were also detected. Blood spectroscopy is a 

tool with great promise in the field of OA research and potentially clinical translation. 
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Figure Legends 

Fig 1: (A) Raw spectra (solid line) with s.d. (coloured area); (B) Pre-processed spectra (solid 

line) with s.d. (coloured area). HC = healthy controls and OA = osteoarthritis cases.  

 

Fig 2: ATR-FTIR spectroscopic analysis. (A) Multi-dimensional PCA scores plot (PC1 x 

PC2 x PC3). (B) PCA loadings along PC1 with the top six discriminating peaks accounting 

for the segregation between osteoarthritis cases (OA) and controls; the dotted-line spectrum 

at the background indicates the mean spectra before PCA.  

 

Fig 3: PCA-QDA. (A) Normalised discriminant function (DF) for training and test samples; 

(B) Receiver Operating Characteristic (ROC) curve for the test set.  

HC = healthy controls; OA = osteoarthritis cases; AUC = area under the curve. 

 

Fig 4: The absorbance differences of the top six discriminatory wavenumbers, along with the 

P-values after statistical analysis (Mann Whitney U test): 1539 cm-1 (bending vibration of (N-

H) of proteins, Amide II band), 1474 cm-1 (bending vibration of (CH2) of proteins/lipids), 

1400 cm-1 (stretching vibration of (COO-) of amino acids and/or bending vibration of (CH3) 

of proteins), 1304 cm-1 (Amide III band, components of proteins), 1161 cm-1 (stretching 

vibration of C-OH groups of proteins and/or (C-O) and (C-O-C) groups of carbohydrates) 

and 1034 cm-1 (collagen). Blue and red dots are expressed as real data points. Mean ± s.d. are 

expressed as horizontal bars.  A P-value ≤0.05 was considered significant. OA = 

osteoarthritis cases.  
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