18 research outputs found
Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer
Circulating tumor DNA (ctDNA) is a potential source for tumor genome analysis. We explored the concordance between the mutational status of RAS in tumor tissue and ctDNA in metastatic colorectal cancer (mCRC) patients to establish eligibility for anti-epidermal growth factor receptor (EGFR) therapy. A prospective-retrospective cohort study was carried out. Tumor tissue from 146 mCRC patients was tested for RAS status with standard of care (SoC) PCR techniques, and Digital PCR (BEAMing) was used both in plasma and tumor tissue. ctDNA BEAMing RAS testing showed 89.7% agreement with SoC (Kappa index 0.80; 95% CI 0.71 − 0.90) and BEAMing in tissue showed 90.9% agreement with SoC (Kappa index 0.83; 95% CI 0.74 − 0.92). Fifteen cases (10.3%) showed discordant tissue-plasma results. ctDNA analysis identified nine cases of low frequency RAS mutations that were not detected in tissue, possibly due to technical sensitivity or heterogeneity. In six cases, RAS mutations were not detected in plasma, potentially explained by low tumor burden or ctDNA shedding. Prediction of treatment benefit in patients receiving anti-EGFR plus irinotecan in second- or third-line was equivalent if tested with SoC PCR and ctDNA. Forty-eight percent of the patients showed mutant allele fractions in plasma below 1%. Plasma RAS determination showed high overall agreement and captured a mCRC population responsive to anti-EGFR therapy with the same predictive level as SoC tissue testing. The feasibility and practicality of ctDNA analysis may translate into an alternative tool for anti-EGFR treatment selection
Recommended from our members
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
Mathematical physical diagnosis of neonatal cardiac dynamics based on dynamic systems and fractal geometry: Clinical validation study
A mathematical evaluation of neonatal cardiac dynamics was developed. The purpose of this study is to confirm the diagnostic capacity of this methodology to differentiate normal neonatal cardiac and cardiac pathologies through a blind study. For this, 80 Holter records were taken, 10 with evaluation within the limits of normality and 70 with different cardiac pathologies. The conventional evaluations were masked, and the maximum and minimum heart rates were taken every hour and the number of beats/hours, during 21 hours. These values were used to generate the neonatal cardiac attractor, then their fractal dimension was calculated, their occupation spaces were quantified in the fractal space of Box-Counting, determining their physic mathematical diagnosis. The spaces of occupation of neonatal chaotic cardiac attractors measured according to the number of frames occupied by the Box Counting method, differentiate states of normality from acute pathologies, achieving a sensitivity and specificity of 100%, as well as a kappa coefficient of 1. The This study confirms the diagnostic capacity of the methodology developed, from which it is possible to establish geometric differences between the chaotic attractors of normal neonatal cardiac dynamics and with disease. © 2019 Published under licence by IOP Publishing [email protected]
New insights into the molecular phylogeny, biogeographical history, and diversification of Amblyomma ticks (Acari: Ixodidae) based on mitogenomes and nuclear sequences
Abstract
Background
Amblyomma is the third most diversified genus of Ixodidae that is distributed across the Indomalayan, Afrotropical, Australasian (IAA), Nearctic and Neotropical biogeographic ecoregions, reaching in the Neotropic its highest diversity. There have been hints in previously published phylogenetic trees from mitochondrial genome, nuclear rRNA, from combinations of both and morphology that the Australasian Amblyomma or the Australasian Amblyomma plus the Amblyomma species from the southern cone of South America, might be sister-group to the Amblyomma of the rest of the world. However, a stable phylogenetic framework of Amblyomma for a better understanding of the biogeographic patterns underpinning its diversification is lacking.
Methods
We used genomic techniques to sequence complete and nearly complete mitochondrial genomes –ca. 15 kbp– as well as the nuclear ribosomal cluster –ca. 8 kbp– for 17 Amblyomma ticks in order to study the phylogeny and biogeographic pattern of the genus Amblyomma, with particular emphasis on the Neotropical region. The new genomic information generated here together with genomic information available on 43 ticks (22 other Amblyomma species and 21 other hard ticks–as outgroup–) were used to perform probabilistic methods of phylogenetic and biogeographic inferences and time-tree estimation using biogeographic dates.
Results
In the present paper, we present the strongest evidence yet that Australasian Amblyomma may indeed be the sister-group to the Amblyomma of the rest of the world (species that occur mainly in the Neotropical and Afrotropical zoogeographic regions). Our results showed that all Amblyomma subgenera (Cernyomma, Anastosiella, Xiphiastor, Adenopleura, Aponomma and Dermiomma) are not monophyletic, except for Walkeriana and Amblyomma. Likewise, our best biogeographic scenario supports the origin of Amblyomma and its posterior diversification in the southern hemisphere at 47.8 and 36.8 Mya, respectively. This diversification could be associated with the end of the connection of Australasia and Neotropical ecoregions by the Antarctic land bridge. Also, the biogeographic analyses let us see the colonization patterns of some neotropical Amblyomma species to the Nearctic.
Conclusions
We found strong evidence that the main theater of diversification of Amblyomma was the southern hemisphere, potentially driven by the Antarctic Bridge's intermittent connection in the late Eocene. In addition, the subgeneric classification of Amblyomma lacks evolutionary support. Future studies using denser taxonomic sampling may lead to new findings on the phylogenetic relationships and biogeographic history of Amblyomma genus.
Graphical Abstrac
Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer.
Circulating tumor DNA (ctDNA) is a potential source for tumor genome analysis. We explored the concordance between the mutational status of RAS in tumor tissue and ctDNA in metastatic colorectal cancer (mCRC) patients to establish eligibility for anti-epidermal growth factor receptor (EGFR) therapy. A prospective-retrospective cohort study was carried out. Tumor tissue from 146 mCRC patients was tested for RAS status with standard of care (SoC) PCR techniques, and Digital PCR (BEAMing) was used both in plasma and tumor tissue. ctDNA BEAMing RAS testing showed 89.7% agreement with SoC (Kappa index 0.80; 95% CI 0.71 - 0.90) and BEAMing in tissue showed 90.9% agreement with SoC (Kappa index 0.83; 95% CI 0.74 - 0.92). Fifteen cases (10.3%) showed discordant tissue-plasma results. ctDNA analysis identified nine cases of low frequency RAS mutations that were not detected in tissue, possibly due to technical sensitivity or heterogeneity. In six cases, RAS mutations were not detected in plasma, potentially explained by low tumor burden or ctDNA shedding. Prediction of treatment benefit in patients receiving anti-EGFR plus irinotecan in second- or third-line was equivalent if tested with SoC PCR and ctDNA. Forty-eight percent of the patients showed mutant allele fractions in plasma below 1%. Plasma RAS determination showed high overall agreement and captured a mCRC population responsive to anti-EGFR therapy with the same predictive level as SoC tissue testing. The feasibility and practicality of ctDNA analysis may translate into an alternative tool for anti-EGFR treatment selection
Gastrointestinal diseases and their oro-dental manifestations: Part 3: Coeliac disease
Coeliac disease is a chronic autoimmune-mediated enteropathy, caused by exposure to dietary gluten in genetically predisposed individuals that affects approximately 0.5-1% of the western population. Despite increased awareness of the disease, the majority of patients still remain undiagnosed. Disease frequently manifests in early childhood, but a significant proportion of patients are nowadays diagnosed above the age of 50. Timely diagnosis is important in order to start a gluten-free diet and prevent complications. Symptoms of coeliac disease vary widely and are certainly not restricted to the intestine. They may include, among others, dental and oral manifestations. Most of them are nonspecific but symmetric enamel defects are very specific to coeliac disease. It is important to recognise this relationship since it may help to identify unrecognised patients