162 research outputs found

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    A Foundational View on Integration Problems

    Full text link
    The integration of reasoning and computation services across system and language boundaries is a challenging problem of computer science. In this paper, we use integration for the scenario where we have two systems that we integrate by moving problems and solutions between them. While this scenario is often approached from an engineering perspective, we take a foundational view. Based on the generic declarative language MMT, we develop a theoretical framework for system integration using theories and partial theory morphisms. Because MMT permits representations of the meta-logical foundations themselves, this includes integration across logics. We discuss safe and unsafe integration schemes and devise a general form of safe integration

    A coalgebraic perspective on logical interpretations

    Get PDF
    In Computer Science stepwise refinement of algebraic specifications is a well-known formal methodology for rigorous program development. This paper illustrates how techniques from Algebraic Logic, in particular that of interpretation, understood as a multifunction that preserves and reflects logical consequence, capture a number of relevant transformations in the context of software design, reuse, and adaptation, difficult to deal with in classical approaches. Examples include data encapsulation and the decomposition of operations into atomic transactions. But if interpretations open such a new research avenue in program refinement, (conceptual) tools are needed to reason about them. In this line, the paper’s main contribution is a study of the correspondence between logical interpretations and morphisms of a particular kind of coalgebras. This opens way to the use of coalgebraic constructions, such as simulation and bisimulation, in the study of interpretations between (abstract) logics.Fundação para a Ciência e a Tecnologia (FCT

    Asymmetric Combination of Logics is Functorial: A Survey

    Get PDF
    Asymmetric combination of logics is a formal process that develops the characteristic features of a specific logic on top of another one. Typical examples include the development of temporal, hybrid, and probabilistic dimensions over a given base logic. These examples are surveyed in the paper under a particular perspective—that this sort of combination of logics possesses a functorial nature. Such a view gives rise to several interesting questions. They range from the problem of combining translations (between logics), to that of ensuring property preservation along the process, and the way different asymmetric combinations can be related through appropriate natural transformations

    Experienced discrimination amongst European old citizens

    Get PDF
    This study analyses the experienced age discrimination of old European citizens and the factors related to this discrimination. Differences in experienced discrimination between old citizens of different European countries are explored. Data from the 2008 ESS survey are used. Old age is defined as being 62 years or older. The survey data come from 28 European countries and 14,364 old-age citizens. Their average age is 72 years. Factor analysis is used to construct the core variable ‘experienced discrimination’. The influence of the independent variables on experienced discrimination is analysed using linear regression analysis. About one-quarter of old European citizens sometimes or frequently experience discrimination because of their age. Gender, education, income and belonging to a minority are related to experienced age discrimination. Satisfaction with life and subjective health are strongly associated with experienced age discrimination, as is trust in other people and the seriousness of age discrimination in the country. Large, significant differences in experienced discrimination due to old age exist between European countries. A north-west versus south-east European gradient is found in experienced discrimination due to old age. The socio-cultural context is important in explaining experienced age discrimination in old European citizens. Old-age discrimination is experienced less frequently in countries with social security arrangements. Further research is needed to understand the variation in (old) age discrimination between European countries. Measures recommended include increasing public awareness about the value of ageing for communities and changing public attitudes towards the old in a positive way

    ASP, Amalgamation and the Conceptual Blending Workflow

    Get PDF
    We present a framework for conceptual blending – a concept invention method that is advocated in cognitive science as a fundamental, and uniquely human engine for creative thinking. Herein, we employ the search capabilities of ASP to find commonalities among input concepts as part of the blending process, and we show how our approach fits within a generalised conceptual blending workflow. Specifically, we orchestrate ASP with imperative Python programming, to query external tools for theorem proving and colimit computation. We exemplify our approach with an example of creativity in mathematics. © Springer International Publishing Switzerland 2015.This work is supported by the 7th Framework Programme for Research of the European Commission funded COINVENT project (FET-Open grant number: 611553). M. Eppe is supported by the German Academic Exchange ServicePeer Reviewe

    Untyping Typed Algebras and Colouring Cyclic Linear Logic

    Full text link
    We prove "untyping" theorems: in some typed theories (semirings, Kleene algebras, residuated lattices, involutive residuated lattices), typed equations can be derived from the underlying untyped equations. As a consequence, the corresponding untyped decision procedures can be extended for free to the typed settings. Some of these theorems are obtained via a detour through fragments of cyclic linear logic, and give rise to a substantial optimisation of standard proof search algorithms.Comment: 21

    Notions of Bidirectional Computation and Entangled State Monads

    Get PDF
    Bidirectional transformations (bx) support principled consistency maintenance between data sources. Each data source corresponds to one perspective on a composite system, manifested by operations to ‘get’ and ‘set’ a view of the whole from that particular perspective. Bx are important in a wide range of settings, including databases, interactive applications, and model-driven development. We show that bx are naturally modelled in terms of mutable state; in particular, the ‘set’ operations are stateful functions. This leads naturally to considering bx that exploit other computational effects too, such as I/O, nondeterminism, and failure, all largely ignored in the bx literature to date. We present a semantic foundation for symmetric bidirectional transformations with effects. We build on the mature theory of monadic encapsulation of effects in functional programming, develop the equational theory and important combinators for effectful bx, and provide a prototype implementation in Haskell along with several illustrative examples
    corecore